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Abstract

Streaming social media network data has been used in recent studies on political

behavior and institutions. Modeling their time dynamics helps political scientists produce

robust results and efficiently manage their data collection process. However, existing

political science methods are yet to provide researchers with the tools to analyze and

monitor streaming social media network data. In this paper, I introduce Bayesian dynamic

network modeling for political science research. An extension of the recent development

of dynamic modeling techniques, the method enables political scientists to track trends

and detect anomalies in streaming social media network data. I illustrate the method

with an application to an original dataset of political discourse from a Chinese social

networking site. The model detects citizens’ behavioral responses to political and non-

political events. It also suggests the Chinese government censors and fabricates online

discourse during politically sensitive periods.

Data from political discourse on social media streams contain patterns that await discovery

and explanation. However, political scientists lack the tools to track and analyze the data’s

time dynamics.

In recent years, social media data have been used to answer questions about political

behavior and institutions that conventional forms of data have limited capacity to address.

Social media data generate high-quality measures and serve as a platform for large-scale

behavioral experiments. They also reveal strategies to manipulate the flow of information.
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Most observational studies and online field experiments with social media data are built

on data collection efforts that last for an extended period. As a result, observations are

timestamped, and they arrive at researchers’ databases as streaming data. This property

has implications for both the data analysis and management of research projects. For robust

data analysis, the timestamps of data generation should be considered for valid measures and

unconfounded estimates. For efficient project management, researchers benefit from tracking

patterns in real-time as data streams instead of waiting until the completion of data collection

to perform analysis.

Methods for modeling the time dynamics of streaming social media data have not received

enough attention in the political science community. For data analysis, social media data have

often been aggregated into cross-sectional data or repeatedly measured data of only a few time

points. For project management, researchers mostly rely on ad hoc visualization to examine

their intermediate results during the data collection process.

In this chapter, I introduce Bayesian dynamic network modeling (BDNM), a scalable and

interpretable method that helps political scientists track and analyze the time dynamics of

social media network data. BDNM has the capacity to perform real-time inference, predic-

tion, and anomaly detection as data streams in. The model applies the latest development

of Bayesian forecasting modeling methods with an original extension to account for the erup-

tive and sporadic feature of social media data. I illustrate the method with its application

to an original dataset of social media discourse, studying how political attention shifts in

authoritarian China.

The rest of this paper is organized as follows. Section 1 reviews political science literature

on social media and discusses the motivation for the new method. Section 2 introduces the

Bayesian dynamic network modeling method. Section 3 presents an application of the method.

Section 4 concludes.

1 Modeling Social Media Network Data

In recent years, empirical studies based on social media data have garnered significant interest

in the political science community. This increasingly accessible type of data has been mined to

answer a broad range of questions about political behavior and institutions. Social media data
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have shed light on political behavior by providing new measures of public opinion and new

platforms for field studies examining how individuals respond to political information. The

data can also be used to study political institutions, revealing the motives and consequences

of elites’ and regimes’ systematic intervention in mass political communication. This rich data

source challenges political scientists to develop new methods to analyze it. State-of-the-art

methods for political talk do not pay enough attention to an important dimension of the data:

the time dynamics. The missing dimension limits political scientists’ capacity to explore big

social media data and to make inferences and predictions using these data. The rest of this

section provides an overview of a selection of the important political science literature on

social media political talk and describes the gap I attempt to fill with this paper.

1.1 Social Media Data for Political Science Research

Political scientists use social media data to study political behavior and political institutions.

Studies of political behavior use social media data to measure mass opinion: Bond and Mess-

ing (2015) uses friendship, following, and demographic data of 6 million Facebook users to

estimate their ideological position and validate their results by their self-reported political

views in surveys; Barberá et al. (2015) creates measures of the ideological positions of 3.8

million Twitter users with their following network.

Political behavior research also uses data of social media activities to study how individuals

process and communicate political information. Studies recently conducted in a democratic

context focus on polarization and the electoral consequences of social media political talk.

These studies show that the flow of information on the social media can be polarizing. In-

dividuals have a low chance of being exposed to news representing views different from their

own because their online friends tend to be in same ideological camp as them (Bakshy et al.,

2015). Even when individuals are exposed to differing views, they tend to consolidate their

original views (Bail et al., 2018). A substantial amount of incivility and racism is observed on

social media (Munger, 2017a,b). Beyond its polarizing effect on political opinion, social media

has electoral consequences. A large-scale experimental study shows that virtual recognition

of voting can boost turnout (Bond et al., 2012).

Outside of democratic countries, studies of political behavior using social media data focus
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on how citizens respond to government control of information. Censorship by authoritarian

governments evidently adds friction to spread of information among citizens, which deters

citizens from sharing anti-regime information (Roberts, 2014). However, when techniques for

accessing blocked websites are available, sudden censorship can increase citizens’ access to

blocked websites (Hobbs and Roberts, 2018).

Finally, social media data are used to understand political institutions, especially in au-

thoritarian regimes. For example, observational and experimental studies based on data from

a large number of social media posts find that the Chinese government strategically censors so-

cial media content: posts with collective action potential are more likely to be removed while

those simply criticizing the government are more likely to be tolerated (King et al., 2013,

2014). Leaked backend data from one of China’s largest social networking sites help identify

how companies censor social media content at the government’s request (Miller, 2018). Leaked

communication data from a propaganda department in China show that the government hires

large numbers of Internet commentators to fabricate social media posts, in order to distract

citizens from criticism of the regime (King et al., 2017). And Twitter data from Venezuela

show elites in an authoritarian regime strategically use social media posts to discredit their

political opponents and opposition protests (Munger et al., 2018).

This selection of literature demonstrates the importance of social media data in recent

empirical studies in political science. Social media data can help political scientists understand

politics at both the micro (behavioral) and the macro (institutional) level across contexts. To

use this new type of data to answer substantive questions, political scientists apply and develop

new methods for observational and experimental studies online.

1.2 Methods for Social Media Network Data

Political scientists use social media data for both observational and experimental research.

Observational studies focus on exploring the data ”as-is” and create measures to test theories

of interest with statistical inference. For example, among studies reviewed in Section 1.1, ob-

servational social media data are employed to measure ideological position (Bond and Messing,

2015; Barberá et al., 2015), reveal citizens’ responses to censorship (Roberts, 2014; Hobbs and

Roberts, 2018), and regimes’ censorship and propaganda strategies (King et al., 2013; Miller,
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2018; King et al., 2017). In these studies, researchers do not intervene in the data generating

process. In comparison, recent scholarship has seen the rise of field experiments using social

media data, in which researchers design interventions and examine their treatment effect. For

example, political scientists alter participants’ political news feeds (Bakshy et al., 2015; Bail

et al., 2018) and online interactions (Munger, 2017b,a). Online field experiments have gained

in popularity because they allow more control over the data than observational studies do,

while providing a more realistic context for participants than lab experiments do (see Parigi

et al., 2017; Baldassarri and Abascal, 2017; Muise and Pan, 2019; de Rooij et al., 2009, for

reviews).

Social network modeling is an essential tool for both observational studies and field ex-

periments with social media data. Many studies draw inferences from analysis of network

data, for example, by creating ideological measurement with online friendship network, or

by analyzing patterns of communication within an online messaging network. In addition,

even studies that are not focused on the network commonly analyze network structure for

exploratory analysis or, in field experiments, track connections among participants in the

network to check for interference that may bias causal identification.

The most popular method for social network data in political science is latent space mod-

eling. Latent space models estimate positions of observations in a low-dimensional latent

space based on observed data (?). Such models can fit networks whose edges are continuous,

ordinal data, or censored data (Hoff, 2009; Hoff et al., 2013; Hoff, 2015). To measure opinion

with social media data, researchers extend the model to efficiently estimate latent ideological

space of millions of Twitter users (Barberá, 2015; Barberá et al., 2015). In addition, variants

of latent space models are used to measure politicians’ ideological positions based on con-

gressional voting (Clinton et al., 2004) and campaign donation (?). In international relation

studies, they are used to model trade and conflicts among states (Dorff and Ward, 2013).

This paper focuses on a different dimension of social media network data: time dynamics.

Most existing political science studies analyze social media network data as cross-sectional

data or at most as repeated measures data with only a few time points. Observational

studies scrape data generated within a window of time and analyze it without regard to the

exact timestamps at which datapoints were generated. Experimental studies, similarly, take

snapshots of data at different phases of the study or group data into bins based on the time it
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was generated. The lack of attention to the time dynamics of social media network data causes

significant loss of information for researchers, especially considering how data are collected in

current online observational studies and field experiments.

1.3 Tracking the Time Dynamics of Streaming Social Media Network Data

Methods to track the time dynamics of social media network data are an important yet

underexplored area for political science studies on social media network data. I argue that

modeling time can serve two purposes: generating more robust and richer empirical findings;

and enabling effective monitoring of research projects. To serve these purposes, a model

to track the time dynamics of social media networks should be scalable and amenable to

streaming data.

Incorporating time in analyses helps generate more robust and richer findings from data.

First, researchers can control for time as a confounder for robust results. For example, in

studies on social media political communication, the quality of communication may be con-

founded by the time of day and day of week the talk takes place. If time of communication is

not randomly assigned, not controlling for time can bias the estimated effect of the variable

of interest. Second, the variation in social media activities explained by time may be theo-

retically interesting to political scientists. For example, in studies on individual responses to

information, the timing of actions, such as following a politician or sharing news, may indicate

user attitudes: those who receive information as treatment from the researcher but are slower

to take actions on it may be more skeptical and more reluctant to do so.

Incorporating time can also enable researchers to more effectively monitor research projects

using social media network data. Collection of original data from the social network can

take months or even years. The long time required for data collection is sometimes due to

limitations in computational power. More often, it is by design: in observational studies,

researchers observe online communities for an extended time period to obtain larger sample

sizes; in field experiments, they may want to study the long-term effects of their treatments.

Regardless of the reason for choosing a long data collection process, researchers usually benefit

from real-time intermediate output. High-quality intermediate output enables researchers to

access preliminary results before data collection is completed. It also helps researchers detect
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anomalies early and respond with supplemental research designs.

To serve these two purposes, political scientists need a new type of model that is scalable

and amenable to streaming data. The computation of the model should be scalable as data

gathered from large social media networks measured over a long time period can be computa-

tionally overwhelming. In addition, to monitor streaming data in the data collection proecss,

the model should have online learning capacity. In the following section, I introduce Bayesian

dynamic network modeling, a method that has both features.

2 Bayesian Dynamic Network Modeling

I introduce Bayesian dynamic network modeling for political science studies of social media

network data. Scalable and capable of online learning with streaming data, the method

has three integral components: a data processing strategy, decoupling/recoupling, dividing

repeatedly measured network data into univariate sequences; a Bayesian model, the dynamic

generalized linear model, for decoupled binary and count network flows; and the dynamic

gravity model for reconstruction of network structure with the learned parameters. The first

part of this section provides an overview of the method with reference to the literature. The

second part introduces the decoupling/recoupling concept. The third part introduces the

dynamic generalized linear model. The fourth part introduces the dynamic gravity model.

2.1 An Overview of Bayesian Dynamic Modeling

I start the discussion with an overview of Bayesian dynamic modeling to provide background

information to readers from the political science community.1 Bayesian dynamic network

modeling considers repeatedly measured network flow data as a multivariate time series. The

method is a recent extension of traditional (univariate) dynamic models, a family of statistical

model for time series data. Since its introduction decades ago, dynamic models have had wide

application in medical research and finance. However, they have been underutilized in political

science.

The basic setup of a univariate dynamic models can be demonstrated by an example of its

simplest form, a normal dynamic linear model. Importantly, it models time series data with a
1The overview refers to two textbooks of Bayesian dynamic modeling: ?, Section 1, 2, ?, Chapter 4.
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system of two equations. Consider a time series Y = [y1, y2, ...yT ]
T . A normal dynamic linear

model is formalized as follows:

(observation model) yt = F′
tθt + νt νt ∼ N(0, Vt)

(evolution model) θt = Gtθt−1 + wt wt ∼ N(0,Wt)

(initial information) θ0 ∼ N(0,W0)

To elaborate: at time t, the distribution of observed data yt is dependent on an unobserved

state vector θt of the current period; the distribution of unobserved state vector θt evolves

over time depending on previous state vectors. The model has four hyperparameters, prede-

termined by the researcher: Ft determines the relation between observed data and the current

state vector, containing known constants and regressors at time t. Gt, known as the state

evolution matrix, determines in what way a current state vector is dependent on previous

state vectors. The specification of Gt is flexible. Traditional time domain models AR, MA,

and ARMA can all be modeled with special cases of Gt (?, Chapter 2). It can also model

seasonality (?, Chapter 3). vt is the observation noise, controlling how much the model at-

tributes variance of the data at certain time point to measurement error. wt is the state

evolution noise, controlling how much fluctuation of data over time is considered signals of

time-dependent evolution as oppose to noise.

Fitting a Bayesian dynamic model, two processes are performed to learn the posterior

state vector: sequential updating and retrospective updating. Sequential updating learns the

posterior distribution of a state vector θt based on data points observed at all previous and

current periods. Note that at the first time period t = 1, prior information θ0 is provided. Af-

ter sequential updating, researchers can perform retrospective analysis to smooth the learned

state vectors. Retrospective updating learns posterior distribution of a state vector θt|T based

on all data points of past, current, and future time periods. Researchers can make inferences

based on the two sets of learned posterior state vectors. For use of the model to forecast,

interests lie at using sequentially updated state vectors θt to forecast data of future k time

periods yt+k.

Bayesian dynamic modeling has been widely applied to analysis of medical and financial

data. However, it is underutilized in political science, especially research on big social media
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network data. The lack of attention is evident in its absence from recent major methodological

contributions to time series data analysis in political science (Keele and Kelly, 2006; Keele

and DeBoef, 2008; Beck and Katz, 2011; Box-Steffensmeier et al., 2014). To my knowledge, its

only applications are in models of the ideological positions of the justices of the U.S. Supreme

Court (?) and in text-as-data models for legislative agendas (Quinn et al., 2010). In both

applications, dynamic linear models are applied to capture the time dynamics.

The dynamic linear model cannot be directly applied to social media network data because

the data are multivariate and usually not continuous or normally distributed. I build on recent

developments of the decoupling/recoupling data processing strategy and techniques handling

over-dispersion in the dynamic modeling literature to develop new dynamic network models

for political science research using social media data.

2.2 Decouping/Recoupling

Using a decoupling/recoupling strategy, I operationalize social media networks into individ-

ual univariate time series for scalable computation. The strategy is straightforward: the

decoupling step divides network data into individual time series, each fits into an individual

dynamic model; the recoupling step models the fitted parameters of dynamic models of the

decoupling stage.

The straightforward strategy can be illustrated with a hypothetical example. Assume a

researcher collects data on uncivil political exchanges among a group of users on a social

media platform. Let yijt be the number of uncivil exchanges between users i and j observed

at time t. Assume there are I users observed in T time periods. In the decoupling step,

an individual dynamic model is fitted to a sequence of data Yij = [yij,1, yij,2, ...yijT ] for each

pair of users i, j ∈ {1, 2, ...I}. The maximum total number of individual models fit is the

total number of possible edges I(I − 1). Results of the decoupling step show how the level of

uncivil communication between each pair of users changes over time. In the recoupling step,

parameters learned in all these models are used to attribute the sources of edge formation (i.e.,

engagement in uncivil online talk in this example). This is a stepwise process in which the

decoupling step models the time dependency, while the recoupling step models the network

dependency.
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My application of the decoupling/recoupling strategy is built on recent developments in

dynamic modeling methods. For example, dynamic dependence network models by ? use

the strategy for modeling and forecasting high-dimensional financial time series data. ? use

the strategy to model multi-scale data of retail inventory, making use of information about

categories of products. Closer to my effort, ? and ? model click-through data on news

websites to analyze online traffic over time.2

With network data decoupled into individual time series, the next steps constitute the

development of appropriate dynamic models for decoupled data and an appropriate recoupling

method.

2.3 Decoupling: Dynamic Generalized Linear Model

The edges of social media networks are often binary or weighted by some count data. Examples

of binary (unweighted) edges include whether a person follows another and whether a person

sends a message to one another during a certain time period. Examples of edges weighted

by count data include the number of common friends or common page visits between two

people and the number of conversation between them. To model these types of data, dynamic

models for binary and count outcome are required. An additional challenge, these data can be

volatile and sporadic: social media activities can be eruptive (e.g., discussion around a piece

of breaking news); the number of non-zero data points between a pair of nodes throughout

time can be rare (e.g., many people remain silent on the social media most of the time).

Therefore, these feature require additional modeling design. I introduce dynamic generalized

linear models for binary and count data and extend them to better fit volatile and sporadic

social media data.

2.3.1 DGLM for Binary and Count Data in a Network

I model the time series of binary and count data with dynamic generalized linear models (?,

Section 14). With DGLM, observations are assumed to be drawn from a distribution in the
2For more examples, see West (2020).
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exponential family:

p(Yt|ηt, Vt) = exp{V −1
t [yt(Yt)ηt − a(ηt)]}b(Yt, Vt)

where ηt is the natural parameter of the distribution and Vt is the scale parameter.

A dynamic generalized linear model is specified as below:

(observation) p(Yt|ηt)

(link) g(ηt) = F′
tθt

(evolution) θt = Gtθt−1 + wt wt ∼ [0,Wt]

Compared to the dynamic linear models introduced in Section 2.1, the generalized linear model

adds a link function between the observation and evolution models. In the link function, the

natural parameter of the observation model ηt links the observation and evolution models. In

the evolution model, the normality assumption of the evolution noise is removed. It is instead

defined in terms of its first and second moments.

In my application, I focus on two cases of dynamic generalized linear models: the Bernoulli

logistic model and the Poisson loglinear model. The former models binary data, while the

latter models count data. A Bernoulli logistic model is specified as below:

(observation) yt ∼ Bernoulli(pt) pt ∼ Beta(αbt , βbt )

(link) log pt
1− pt

= F′
tθt

(evolution) θt = Gtθt−1 + wt wt ∼ [0,Wt]

A Poisson loglinear model is specified as below:

(observation) yt ∼ Poisson(λt) λt ∼ Gamma(αgt , β
g
t )

(link) logλt = F′
tθt

(evolution) θt = Gtθt−1 + wt wt ∼ [0,Wt]
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2.3.2 Handling Over-dispersion: Dynamic Count Mixture Model

Social media network count data over time can be eruptive and sporadic. Modeling such

data with the Poisson loglinear model can cause over-dispersion, underestimate variance, and

fail to predict unusually high or low data points. I tackle this challenge by using a dynamic

count mixture model with random effects. The dynamic count mixture model was originally

developed by ? to model sales data where the sales volume of different products was volatile

and of different scales. I apply it to social media network data, which arguably has similar

properties.

The dynamic count mixture model considers generation of the observed data as a two-step

process: First, a binary series indicating whether observation yt is non-negative zt = 1(yt > 0)

is drawn from a Bernoulli distribution. Then, if zt = 0, yt = 0. If zt = 1, yt is drawn from a

Poisson distribution shifted by 1. The observation function is specified below:

(observation) zt ∼ Bern(pt) yt|zt =

 0 if zt = 0

1 + xt xt ∼ Pois(λt) if zt = 1

pt ∼ Beta(αbt , βbt ) λt ∼ Gamma(αgt , β
g
t )

The two stages of the observational model have separate dynamic structures. Their link

functions and evolution equations follow the model structures of the Bernoulli logistic and

Poisson loglinear models respectively, as specified below:

(link-bern) log pt
1− pt

= F0
t
′
ξt

(link-pois) logλt = F+
t
′
θt

(evolution-bern) ξt = G0
t
′
ξt−1 + w0 w0

t ∼ [0,W0
t ]

(evolution-pois) θt = G+
t
′
θt−1 + w+

t w+
t ∼ [0,W+

t ]

The above specification may still be insufficient for volatile and sporadic social media network

data. I further add a time-specific random effect to the conditional Poisson model. Specifically,

a time-specific element that can capture a part of the variation at certain time point that

cannot be captured by the original state vector. The link function and evolution model for
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the conditional Poisson loglinear model with random effect is specified below (the part of the

Bernoulli logistic model remains unchanged):

(link-pois-re) log(λt) = F̃+′

t θ̃t where F̃+
t = [1,F+

t
′
]′ and θ̃t = [ζt,θ

′
t]
′

(evolution-pois-re) θt = G̃+′

t θt−1 + w̃+
t w̃+

t ∼ [0,W̃+
t ]

where G̃+
t = blockdiag(1,G+

t ) W̃+
t = blockdiag(wRE

t ,W+
t )

2.3.3 Fitting Dynamic Generalized Linear Models

Dynamic generalized linear models can learn the posterior parameters for inferences and pre-

dictions as data streams in, a key feature making them suitable for observational studies and

online field experiments with social media. Fitting a DGLM, there are two major processes:

sequential updating and retrospective updating. The former learns parameters based on all

previous and current data point, while the latter update parameters using all data. This sec-

tion outlines the updating processes of the dynamic Bernoulli logistic and Poisson loglinear

models, ending with a brief discussion of how they extend to mixture models.

Sequential updating fits models as data streams in. The process loops through data points

from the beginning to the end to learn parameters. To learn posterior parameters at each

time point, it takes six steps, as is detailed in the following block of equations :3

(initialize) Parameters of the initial stage m0 and C0 are pre-determined.

(prior) θt|Dt−1 ∼ [at,Rt] where at = Gtmt−1,Rt = GtCt−1G′
t + Wt

(predict) ηt|Dt−1 ∼ [ft, qt] where ft = F′
tat, qt = F′

tRtFt

(link) Get prior observation model param. ψt|Dt−1 by moment approx.

Bern: solve


ft = γ(αbt )− γ(βbt )

qt = γ̇(αbt ) + γ̇(βt)

for αbt , βbt ⇒ pt|Dt−1 ∼ Bern(αbt , βbt )

Pois: solve


ft = γ(αgt )− logβgt

qt = γ̇(αgt )

for αgt , β
g
t ⇒ λt|Dt−1 ∼ Gamma(αgt , β

g
t )

3The Bernoulli logistic model and the Poisson loglinear model have the same operation in all steps but the
“link” step. The equation starting with ”Bern” is for the former, while the one starting with ”Pois” is for the
latter.
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where γ(·) and γ̇(·) are digamma and trigamma functions.

(update) Get posterior observation model param. ψt|Dt with data

Bern: pt|Dt ∼ Bern(αb∗t , βb∗t ) where αb∗t = αbt + zt, β
b∗
t = βbt + 1− zt

Pois: λt|Dt ∼ Gamma(αg∗t , β∗t ) where αg∗t = αgt + xt, β
g∗
t = βgt + 1

(link-back) Get posterior link ηt|Dt ∼ [f∗t , q
∗
t ]

Bern: f∗t = γ(αb∗t )− γ(βb∗t ) q∗t = γ̇(αb∗t ) + γ̇(βb∗t )

Pois: f∗t = γ(αg∗t )− log(βg∗t ) q∗t = γ̇(αg∗t )

(posterior) θt|Dt ∼ [mt,Ct] where

mt = at + RtFt(f
∗
t − ft)/qt Ct = Rt − RtFtF′

tR′
t(1− q∗t /qt)/qt

Retrospective updating, the second block of processes in fitting dynamic models, can be

performed at the end of a phase of data collection. The learning process updates parame-

ters learned in sequential updating by considering all data points collected. For sequences

with considerable volatility, it can significantly change the estimation of some parameters.

Researchers can use parameters learned with retrospective updating as the “finalized” results

for interpretation.

The process starts from the end of a sequence and loops backward to the start. Updating

at each time point requires three steps, as detailed below:4.

(retro) θt|DT ∼ [at|T ,Rt|T ] where, with Bt = CtG′
t+1R−1

t+1

at|T = mt − Bt(at+1 − at+1|T ) Rt|T = Ct − Bt(Rt+1 − Rt+1|T )B′
t

(predict-s) ηt|DT ∼ [ft|T , qt|T ] where ft|T = F′
tat|T , qt|T = F′

tRt|TFt

(link-s) Get smoothed observation model param. ψt|DT by moment approx.

Bern: solve


ft|T = γ(αbt|T )− γ(βbt|T )

qt|T = γ̇(αbt|T ) + γ̇(βbt|T )

for αbt|T , β
b
t|T

⇒ pt|DT ∼ Bern(αbt|T , β
b
t|T )

4The same as Footnote 3.
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Pois: solve


ft|T = γ(αgt|T )− logβgt|T

qt|T = γ̇(αgt|T )

for αgt|T , β
g
t|T

⇒ λt|DT ∼ Gamma(αgt|T , β
g
t|T )

where γ(·) and γ̇(·) are digamma and trigamma functions.

The above discussion outlines the processes of sequential updating and retrospective up-

dating for both the dynamic Bernoulli logistic model and the dynamic Poisson loglinear model.

Fitting the dynamic count mixture model only requires a simple extension from the above

two models. As discussed in Section 2.3.2, the two stages of the observation model have

separate evolution processes. The binary indicators for non-zero counts zt are simply fitted

to a dynamic Bernoulli logistic model. The shifted counts xt are fitted to a separate dynamic

Poisson loglinear model. At a time period where zero is observed, xt is treated as missing, for

which parameters are not updated in either sequential or retrospective updating.

2.3.4 Choosing Hyperparameters

Fitting a dynamic model, the choice of hyperparameters determines the model’s assumptions

(which reflects the researcher’s understanding of the data) about the structure of time depen-

dency (Gt), the structure of local covariates (Ft), and the level of noise as data evolve over

time (Wt). Dynamic models are flexible and provide researchers with a variety of options for

these hyperparameters. Some specifications make a dynamic model equivalent to traditional

time domain models such as ARMA (see ?, Chapter 4, 5). I focus on a simple specification

that suffices for my purpose.

Working with streaming social media data, researchers are interested in finding meaningful

trends of edge formation in the network. However, with the messiness of social media data,

manually examining the data points can confuse signals with noise. For this reason, I introduce

two simple specifications of hyperparameters Ft and Gt that provide interpretable results on

how fast the data of interest evolve over time.

The two specifications, Local Linear Growth Model (LLGM) and Local Quadratic Growth

Model (LQGM), are among the most popular dynamic models (see ?, Section 7; see also ?

for a recent application). The two models both take constant Ft ≡ F,Gt ≡ G. They are
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specified as follows:

(LLGM) F =

1
0

 G =

1 1

0 1

 θt =

θ0,t
θ∆,t



(LQGM) F =


1

0

0

 G =


1 1 0

0 1 1

0 0 1

 θt =


θ0,t

θ∆,t

θ∆2,t


The models are of interest particularly because elements of their state vectors θt are inter-

pretable. In LLGM, the first element of state vector θ0,t shows the absolute current level,

while the second element θ∆,t captures the local rate of change. In LQGM, besides the first

two elements that have the same interpretation with LLGM, the third element θ∆2,t captures

the change in rate of change.

The definition of the parameter for state evolution noise wt is more straightforward. Fol-

lowing the conventional practice of dynamic modeling, I model it as a proportion of the prior

variance of the state, introducing a discount factor δ ∈ (0, 1] (?, Chapter 4).

Wt =
1− δ

δ
GtCt−1G′

t

With this specification, a larger discount factor δ is associated with smaller evolution noise,

leading to a more stable fitted trend. When the discount rate is 1, it means the researcher

assume no noise in evolution. In this case, all noise is attributed to the data generating process

in the observation model.

For dynamic count mixture models, the discount rate for the Bernoulli logistic model

and the Poisson loglinear model are modeled separately. In addition, the random effect in

the Poisson model has its own discount rate, controlling the degree to which the researcher

can attribute variation to time-specific effect. The setup results in three discount rates as

hypterparameters: δbern for the Bernoulli model, δpois for the Poisson model, and ρpois for the

random effect of the Poisson model. Formally, it changes the (prior) step of the sequential
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updating algorithm to the following:

(prior-bern) Rt = GtCt−1G′
t/δ

bern

(prior-pois) Rt = GtCt−1G′
t/δ

pois

(prior-pois-re) Rt = G̃tCt−1G̃′
t/blockdiag([ρpois, δpois1(|G̃t|−1)2 ])

In more complex modeling, researchers may use different discount rates for different ele-

ments of the state vector. I do not explore this complexity in this paper.

2.3.5 One-step-ahead Prediction for Model Evaluation and Anomaly Detection

Like other Bayesian methods, predictions of dynamic generalized linear models are distri-

butions. In existing applications of dynamic modeling, one-step-ahead prediction is often

performed for forecasting, model evaluation and anomaly detection. One-step-ahead predic-

tion obtains the distribution of the outcome at a current time point based on data in all

previous time points. The distributions of one-step-ahead predictions for Bernoulli logistic

and Poisson loglinear models are specified as follows:

(Bern-predict) ẑt|Dt−1 ∼ Beta-Bernoulli(1, αbt , βbt )

(Pois-predict) x̂t|Dt−1 ∼ Negative-Binomial(αgt , βgt
1 + βgt

)

Applications of dynamic models to financial data use one-step or k-step ahead prediction for

forecasting. However, since forecasting is not the objective of my application for political

science research, I do not discuss it in detail.

My application uses one-step prediction to evaluate models and detect anomalies. With

the one-step-ahead predictive distribution, the marginal predictive likelihood of each data

point can be obtained. The cumulative marginal predictive likelihood is used to evaluate a

model up to a certain time point. The marginal predictive likelihood at a time point is used

to detect anomalies: when there is a low marginal predictive likelihood, the flow is likely

abruptly changing to an abnormally low or high value.5

Aside from this, the distribution of fitted data at each time point after retrospective
5Other methods for model monitoring are also available. See ?, Section 11.
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updating can be obtained with the same operationalization of one-step-ahead prediction.

(Bern-fitted-retro) ẑt|T |DT ∼ Beta-Bernoulli(1, αbt|T , β
b
t|T )

(Pois-fitted-retro) x̂t|T |DT ∼ Negative-Binomial(αgt|T ,
βgt|T

1 + βgt|T
)

2.3.6 Summary

In this section, I introduced dynamic generalized linear modeling for decoupled social media

network data. Three types of models were discussed: the Bernoulli logistic model, the Poisson

loglinear model, and the count mixture model. The first model fits binary network flows while

the second and third fit count network data. I highlighted the count mixture model which

captures the eruptive and sporadic nature of social media data.

The decoupling step fits models describing edge formation between each pair of nodes

in the network as data streams in. As discussed, it can help researchers explore trends and

detect anomalies during the long process of data collection. However, the step’s result is

not yet informative of the network structure. In the next section, I introduce a method for

unveiling network dependency: the dynamic gravity model.

2.4 Recoupling: Dynamic Gravity Model

Researchers working with streaming social media network data are often interested in attribut-

ing edge formation between nodes. For example, during data collection for a study on the

incivility of social media political communication, researchers may observe a spike of uncivil

exchange between two users at a time point. A question of interest is whether the observation

is attributable to a general rise of incivility in the community, a systematic behavioral change

in either user, or a disruption of the two user’s relationship. Answering questions of this kind

requires the second step of Bayesian dynamic network modeling: recoupling.

I use a dynamic gravity model to recouple. The model assumes that edge formation

between a pair of nodes is attributable to the multiplicative effect of four factors: a time-

specific effect (µ), an original effect (α), a destination effect (β), and an affinity effect (γ).
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For nodes i, j at time t, the edge formation model is specified below:

yijt = µtαitβjtγijt

The gravity model is familiar to political scientists studying international political economy.

For example, studies use the gravity model to fit trade data among countries to study the effect

of WTO (Rose, 2004; Tomz et al., 2007). A fully Bayesian dynamic latent space model based

on the gravity model is developed to model international trade networks (Ward et al., 2013).

My application of the model directly adapts the recent development of dynamic modeling for

online traffic data (??). My application slightly deviates by defining the model in terms of

the observed outcome instead of the parameters of the observation model, to intuitively link

with the mixture model and fully capture the variance.

The dynamic gravity model approximates the distribution of the four types of effect by

empirically decomposing samples of predictive distribution produced in the decoupling step.

For each pair of nodes i, j at each time point t, a sample of predicted or fitted outcome ŷijt
is drawn from its distribution. Putting all samples of individual sequences together results in

a sample of fitted networks. For a sample network s, the four types of effect are calculated

below:

f
(s)
t =

∑
i∈I,j∈I

log(ŷ(s)ijt )/I
2

a
(s)
it =

I∑
j=1

log(ŷ(s)ijt )/I − f
(s)
t

b
(s)
jt =

I∑
i=1

log(ŷ(s)ijt )/I − f
(s)
t

g
(s)
ijt = log(ŷ(s)ijt )− f

(s)
t − a

(s)
it − b

(s)
jt

The model outputs samples approximating the distribution of the four decomposed network

effects. Researchers can use their summary statistics (e.g., mean and 95% credible interval)

for inference and anomaly detection in a way that is similar to that discussed in Section 2.3.
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3 Application: Attention on Chinese Social Media

In this section, I apply Bayesian dynamic network modeling to a dataset of online politi-

cal discourse from one of China’s largest social networking sites. My empirical results show

that individual attention shifts in response to political and non-political events over time. In

addition, my results suggest the existence of strategic censorship and fabrication of online

discourse by the Chinese government. This section is organized as follows: Section 3.1 intro-

duces how the substantive question is linked to the method. Section 3.2 and 3.3 introduce

the data and the models. Section 3.4 elaborates my findings. Section 3.5 discusses.

3.1 Attention

Attention is a scarce resource in the social media era. Politicians fight for it with various

motives. How public attention on politics develops and is manipulated in different contexts

receives close scrutiny in the political science literature.

In a democratic context, researchers are interested in how public attention and elites’

political and policy agendas shape one another over time. For example, Jennings and John

(2009) analyze time-series survey data and coded the Queen’s speech in the U.K. to find

that the British government has short-run responsiveness to public attention on certain is-

sues. Other works explore the dynamics of attention shifts of politicians and political parties

(Grimmer, 2010; Quinn et al., 2010; Ramirez, 2009).

I focus on political attention in an authoritarian context. Recent research shows that

authoritarian governments both respond to public opinion and actively manipulate it, for a

common aim: avoiding anti-regime collective action. For example, experiments show that

Chinese local officials are more likely to respond to an inquiry that comes with a threat of

collective action (Chen et al., 2016; Meng et al., 2017) and the Chinese government censors

social media posts with collective action potential (King et al., 2013, 2014). Of particular

interest to my inquiry, a recent study shows that the Chinese government has hired an “army”

of commentators to distract political discussion on social media away from criticism of the

government (King et al., 2017).

New social media data provide new opportunities for the study of public political attention,

especially for researchers of authoritarian politics. Data collection for research projects on
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attention shift often takes months if not years to complete. Efficiently processing streaming

network data can help researchers understand the dynamics of attention shift during the

course of data collection. It can also help researchers better monitor their data collection.

For example, in the event of abnormally high attention surrounding certain issues, researchers

may be alerted and implement supplemental programs (e.g., a follow-up survey or experiment).

In this case study, I demonstrate the application of Bayesian dynamic network modeling

to analyze the dynamics of political attention on a Chinese social networking site.

3.2 Data

I study attention on Chinese social media using a dataset of political discussion on Zhihu, one

of the largest social networking sites in China. Zhihu is a question-and-answer site. Users

can post questions, answer questions, and vote or comments on answers. Figure 1 shows a

screenshot of a Zhihu question page: a question is displayed with one or more tags in the header

and answers to the question are displayed below. Key to my network operationalization, all

questions on the site are associated with tags that indicate their topics of interest. Tags are

assigned by users as well as the site’s administrators. Here, my interest in the data is in

how users’ attention flows from one tag to another at the aggregate level. In this section, I

introduce the Zhihu website, the data collection process, and the operationalization of network

data of interest.

3.2.1 Zhihu

Zhihu is one of the most popular social networking sites in China. It ranks 24th among all

websites in China and 105th in the world, according to Alexa, an online service of Amazon

that tracks real-time traffic of websites globally. A closer look at the 50 top visited sites in

China shows that the only two social network sites with larger traffic than Zhihu are Weibo

(7th) and Tianya (22st). The site’s management says that it has over 100 million registered

users and 26 million active users per day, who spend an average of one hour on the site per

day.

Political discussion on the website has influenced several political events in China. For

example, in 2016, users of the website raised public awareness of the Lei Yang Incident, in

21



Figure 1: A Screenshot of of Zhihu

which a young man died suspiciously while in custody in Beijing. Friends of Lei posted

statements and questions about Lei’s death on Zhihu and suggested that the policemen

handling the case engaged in misconduct. Fellow users of the site discussed inconsistency in

the police statements, which were later quoted in reports by traditional media outlets and

discussions on other Chinese social media platforms such as Weibo and WeChat. The role

of Zhihu as a platform for expressing political opinions was later reported in the Economist.

More recently, during the March 2018 National People’s Congress, users on the website

subtly discussed and criticized the lifting of presidential term limits by asking and answering

questions about the harm of “driver fatigue.” Following this discussion, the mobile app for the

site was temporarily suspended. Beyond these high-profile cases, users of the site are actively

engaged in everyday discussions about governance, policies, and international relations.
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3.2.2 Data Collection

I developed a web scraper to collect political discourse posted on Zhihu from December 1,

2011 (when the website launched), to March 30, 2016. My scraper visited 101,532 pages

with questions tagged “politics,” collecting a total of 511,137 answers to these questions. In

total, these answers received over 9.7 million upvotes and over 2 million comments by over

1.8 million unique users. I also scraped the profiles of users who: asked a question tagged

“politics;” posted an answer to any of these questions; or upvoted or commented on any of

these answers. Information was collected from user profiles, including a set of self-reported

demographic information, namely, gender, location (province and city), education (name of

schools attended), and occupation.

3.2.3 Operationalization of Network Data

I examine how users of Zhihu shift their attention across political topics by looking at traffic

flows among tags. On Zhihu, tags on questions summarize political topics. A user posting

answers under certain tags signals attention to the topic summarized by the tag. A user who

previously posted an answer under one tag then posts under another tag is considered to have

shifted attention from the previous tag to the current one. The count of the number of users

shifting attention is operationalized as the network flow between the two tags. In addition to

the tags in the political section, I create an “outside” tag, indicating traffic flow from outside

the community. If a user has never posted an answer before, his contribution to any tag is

considered a flow from “outside” to that tag.

With this coding rule, I obtain a dataset of over 7 million “shifts of attention” between

tags. Note that many answers have multiple tags. I handle the multi-tagging problem by

including all pairs of combinations between the origin and the destination answers. For

example, consider a user who posts an answer at time t0 under tags A, B, and C and then

posts an answer at t1 under tag D,E (t1 > t0). Then attention shifts of the user at t1 are:

A→D, A→E, B→D, B→E, C→D, C→E.

To reduce sparsity, I coarsen the unit of time measurement into days, resulting in 365 time

periods. I also take a subset of traffic between tags. First, I choose 100 tags with the activity

throughout the year and subset edges flowing to one of them. Second, I count the number of
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each pair of tags per day, for all 365 days in 2015. The two steps result in 1 million edges.

Finally, I subset edges that have traffic in at least 20% of the days throughout the year of

2015, resulting in 1811 edges, a final subset of data I fit into the model.

With some simple exploratory analysis, snapshots of the daily network shows a high level

of centrality. Most traffic comes from outside the political community. This is intuitive as this

is a large social networking site where the political section is just one of its many communities.

Also, within tags in the community, the level of centrality is high. Tags about major political

entities and topics are much more popular than tags about more niche issues. Figure 2 shows

a network of tags on January 10, 2015.

Figure 2: Attention Shifts among Tags on January 10, 2015
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Note: A snapshot of flows of political discussion among tags with large traffic (top 100) in Zhihu on January 10,
2015. The graph shows 256 edges among 71 nodes. The width of an edge (i → j) is proportional to log(count).

3.3 Models

I apply a Bayesian dynamic network model to the Zhihu network dataset. In the decoupling

step, I use the dynamic count mixture model with random effects, given the high level of

centrality discovered in exploratory analyses and the eruptive features of social media political
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discourse. For each pair of tags i and j, their edge formation at time t is modeled as follows:

(observation) zijt ∼ Bern(pijt)

yijt|zijt =

 0 if zijt = 0

1 + xijt xijt ∼ Pois(λijt) if zijt = 1

pijt ∼ Beta(αb
ijt, β

b
ijt) λijt ∼ Gamma(αg

ijt, β
g
ijt)

(link) log pijt
1− pijt

= F0
ijt

′
ξijt

log(λijt) = F̃+′

ijtθ̃ijt where F̃+
ijt = [1,F+

t
′
]′ and θ̃ijt = [ζijt,θ

′
t]
′

(evolution) ξt−1 + w0 w0
t ∼ [0,W0

t ]

θijt = G̃+′

ijtθ̃ij,t−1 + w̃+
ijt w̃+

ijt ∼ [0,W̃+
ijt]

For F and G, I use the Local Linear Growth Model. For discount factors, I let δbern =

0.95, δpois = 0.90, ρpois = 0.90. Other discount factors are experimented with, for evaluation

purposes.

3.4 Results

The fitted model detects interesting patterns of shifts of attention among a diverse set of

topics on Zhihu. In this section, I present the results of an example pair of tags: traffic flow

from outside the community to the tag “the communist party.” The traffic between the pair

of tags suggests behavior patterns and regime strategies that are of interest to observers of

Chinese politics.

3.4.1 Examining the Posteriors

The fitted parameters of the observation model show two patterns: traffic started out sparse

but quickly become regularly non-zero; several spikes of traffic are observed throughout the

years. The patterns are shown in Figure 3. The left panel shows fitted parameters of the

beta distribution of the Bernoulli distribution. The expected probability of non-negative

flow fluctuates until August, after which it converges to 1. The right panel shows the fitted

parameters of the conditional shifted Poisson distribution. Spikes are spotted in July, August,

and November.
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Figure 3: Sequential and Retrospective Updating of Parameters

The fitted state vector demonstrates the absolute value and the rate of change of the

network flow. As discussed in Section 2.3.4, the Local Linear Growth Model outputs inter-

pretable state vectors. As shown in the left panel of Figure 4, the expected value of θ0,t shows

a pattern similar to the Poisson mean. The right panel of Figure 4 shows that the rate of

change remains relatively stable throughout the year. Except for the model’s “burn-in” period

at the start, February observes a spike in the rate of change θ∆,t. This is the time when the

pair of nodes start to have traffic. Other local maxima of θ∆,t are located in July, September

and November, in accordance to the spike in absolute values.

Figure 4: The State Vector of the Local Linear Growth Model

The models are evaluated with cumulative marginal predictive likelihood (CMPL). As
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shown in Figure 5, CMPL decreases when the discount rates increase, as expected. Two

observations are of interest. First, the impact of the discount factor for random effect on

the result is small compared to that of the main discount factor. The lack of impact of the

random effect on the result is also evident in my other experiments. Second, CMPL drops

abruptly at a few points in time, suggesting sudden shifts that cannot be captured by the

model.

Figure 5: Model Evaluation and Selection

3.4.2 Behavioral Patterns Detected

Detecting sudden shifts of attention as data streams in would be of interest to researchers

studying behavior of political communication. I use marginal predictive likelihood of one-

step-ahead prediction to detect abnormally abrupt shifts of attention between the example

pair of tags. Figure 6 shows one-step-ahead prediction, marginal predictive likelihood (MPL),

and cumulative marginal predictive likelihood (CMPL) (from top to bottom in the figure).

Points whose MPLs are lower than the 5th percentile of all are marked with blue ’x’. Upon

further review, it becomes clear that most of the highlighted points map to important events

in China.

The first group of low-MPL points appears around February. The high traffic may be

trivially attributable to the holiday effect: the Chinese new year is on February 19. Around

the holiday, people may have the time and inclination to participate in online discussion. The

high traffic is unlikely politically motivated. The second group of low-MPL points appears
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in May, right after another major public holiday in China: the labor day. The cause may be

a mixture of holiday and politics. The labor day is a week-long holiday, giving people the

time to talk online. In addition, this is a holiday deeply associated with communism, which

likely prompts people’s interest in joining discussions about the communist party. The third

low-MPL point appears at the start of July, when the Chinese Communist Party celebrates

its founding day, another politically relevant anomaly.

The next two anomalies in MPL are likely associated with special political events in 2015.

A spike in August appears around the time of a tragic explosion in Tianjin, China, that killed

173 people, for which the local government was severely criticized. The anomaly in September,

the largest spike throughout the whole series, likely corresponds to a grand military parade on

September 3 to commemorate the 70th anniversary of the end of World War II. Interestingly,

the traffic spikes and then abruptly drops.6

The above interpretation suggests two types of sources for anomalies: regularly-scheduled

events such as holidays and political events that increase interest in the communist party. The

dynamic gravity model in the recoupling step can help to distinguish the two types of effect.

Figure 7 shows the samples of one-step-ahead prediction decomposed into four types of effect.

Panel (A) shows the overall traffic in this community of political discussion. Mid-February

shows two data points much higher than the upper bound of the credible interval, confirming

the hypothesis about the Chinese new year holiday effect. Such anomalies are also evident

in the July, August, and September spikes, suggesting that discussion trigged by the political

events can take place in other topics in the community. Panel (C) shows the destination effect

of the tag “the communist party.” Data points significantly beyond the 95% credible interval

suggest support for my hypotheses about the politically-motivated spikes in early July, mid

August, and September. However, it finds other spikes that have not been detected by the

decoupled data. Panel (D) shows the affinity effect. Variances are large and signals of patterns

are weak in this sequence. However, the spikes in July, August, and September are still in

evidence, meaning that the anomalies may be driven by new-comers to the community rather

than existing contributors.
6To find explanation for the anomalies, I refer to a news report on China’s top news search in 2015 by the

New York Times: https://cn.nytimes.com/china/20151225/c25searches/dual/
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3.4.3 Censorship and Fabrication Suggested

Moving beyond individual outliers to a more intriguing finding, results of the dynamic graphic

model suggest the existence of strategic censorship and fabrication of online discourse on the

site at extremely politically sensitive time periods. First, an anomaly of traffic in June suggests

the existence of censorship. As shown in Panel (A) of Figure 7, the traffic around June slumps:

it starts to decrease in mid-May, reaches a minimum at the beginning of June, and remains

low until late-June. The sudden decrease is abnormal, considering the steady growth in the

preceding months and the stably high level in the months afterwards. Students of Chinese

politics can intuitively attribute it to the regime’s annual mass censorship campaign around

June 4th. Ever since the Tiananmen incident on June 4th, 1989, discussion of the event

has been a political taboo. In the social media era, the authorities put a lot of effort into

removing any discussion about the event, especially in the days around its anniversary. The

time-specific effect is evidence of this effort.

Furthermore, the origin, destination, and affinity effects show that the censorship is strate-

gic and suggest evidence of fabrication of social media discourse by the regime. As evident

in Panel (B) of Figure 7, the origin effect significantly increases in June, amid the slumped

time-specific effect. This signals a large inflow of outsiders (i.e., first-time contributors) to this

community of political discussion. A possible explanation, consistent with findings of King

et al. (2017), is that commentators working for the government flood into the community in

this politically sensitive period to distract other members away from political discussions.7

Panel (C) shows that the destination effect of the tag “the communist party” also experiences

an increase in the extremely politically sensitive period. This suggests that censorship is

strategic and discussion about the ruling party is tolerated and even encouraged during this

period. It would take close examination of posts to tell what content is encouraged. Finally,

Panel (D) shows that the affinity effect is steady in June. Its lack of pattern indicates that the

tag “the communist party” is probably not the main target of the outsiders’ inflow in June.
7Admittedly, an alternative explanation is that people’s interest in politics is high in general in this special

period, leading to a general inflow. Ruling out this possibility requires close examination of account information
of the new contributors.
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3.5 Discussion

I apply Bayesian dynamic network modeling to study how attention shifts in political discus-

sion on a Chinese social networking site, Zhihu. I use a count mixture model and a dynamic

gravity model to model traffic among 100 most popular tags in the community for political

discussion. I demonstrate the model by describing the flow of new contributors into the tag

“the communist party.” My results detect both behavioral patterns of individuals and suggest

possible intervention from the regime. Spikes of traffic during holidays and around political

events suggest participation in political discussion is driven by both political and non-political

motives. A slump of time-specific traffic accompanied by a high origin effect and normal des-

tination effect in June suggest the existence of strategic censorship and the fabrication of

social media discourse during politically the sensitive period.

It is worth re-iterating that, thanks to its online learning capacity, the dynamic network

model can alert researchers to these anomalies as data stream in. This is especially relevant

to studies on authoritarian politics, as many unexpected political events can create risks that

researchers want to control and opportunities which researchers want to seize during their

data collection.

4 Conclusion

In recent years, social media has become a new data source for empirical political science

research. Researchers use social media to study political behavior and institutions. Among

recent substantive and methodological contributions to political science research with social

media network data, few works have explored its time dynamics. Most existing works an-

alyze this type of data as cross-sectional data or repeated measures with only a few time

points. Without attention to the time dynamics, political scientists may miss opportunities

to understand an important source of variation.

In this chapter, I introduce the Bayesian dynamic network modeling method, a tool helping

political scientists analyze trends of network flows in streaming social media data. The method

uses a decoupling/recoupling strategy: it first decouples network data into univariate time

series sequences to learn the time dynamics, and then it recouples the fitted models to learn

the network structure. In the decoupling step, I fit data to a dynamic count mixture model
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to account for variances in eruptive and sporadic social media data. In the recoupling step,

I fit samples of posterior outcomes to a dynamic gravity model to attribute network flows to

time-specific, origin, destination, and affinity effects.

I illustrate the method with its application to an original dataset of political discourse

on a Chinese social networking site, Zhihu. The application studies how political attention

shifts in authoritarian China and how the government controls it. With the model, I find

evidence of individual behavior and governmental intervention: spikes of discussion about the

communist party are associated with major political events; an anomaly of traffic in June

suggests strategic censorship and fabrication by the government.

The method can be extended in both the decoupling and recoupling steps to accommodate

more complex research designs. In the decoupling step, I have so far focused on local growth

models that assume short time dependency and incorporate no covariates. In future exten-

sions, the model can consider a more complex structure of time dependency (e.g., seasonality)

and explanatory variables. In the recoupling step, the gravity model can be extended to

consider node-level and edge-level covariates in explaining edge formation.

Finally, with this chapter, I attempt to contribute to an ongoing discussion on big data

in political science research. New sources of big data deviate from the conventional forms of

data in this field as they are generated every minute and exceed researchers’ storage capacity.

This challenges political scientists to develop scalable computational methods that can inform

them about data’s real-time patterns and alert them to anomalies. This is important for

both the generation of research ideas and hypotheses as well as the monitoring of ongoing

data collection efforts. The Bayesian dynamic network modeling method introduced in this

chapter attempts to address this challenge. The potential of this family of models for big-data

political science studies using social media data deserves more attention in future research.
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Figure 6: Prediction and Anomaly Detection
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Figure 7: Dynamic Gravity Model with Sequentially Updated DCMM
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