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Abstract

In this paper, I develop a system for generation of valid and replicable measures from

text data by integrating distributed semantics with unsupervised and semi-supervised

clustering models and researchers’ prior information. The system for text-as-data mea-

surement has two design features: informative representation and stepwise guidance. With

informative representation, it learns distributed semantics to represent words, concepts,

and documents in a low-dimensional space. With stepwise guidance, it integrates dis-

tributed semantics with clustering algorithms, seed dictionaries, and researchers’ manual

coding into a workflow that reliably links concepts of substantive interest with messy text

data and produces codebooks for convenient replication and extension.

“Trust me. I’ve checked. See these examples.” This is the typical response to inquiries

on text-as-data measurement validity and replicability in a political science conference room.

No more questions.

In text-as-data studies, measurement validity and replicability puzzles researchers and

their audience. Researchers who are willing to put in lots of effort improving the reliability of

their text-based measures, either by fine-tuning machine reading models or by investing hours

to read documents, lack tools to improve their efficiency. They also lack tools to help system-

atically document their efforts and results in human-interpretable ways to communicate with

their audience. On the other end, audiences of text-as-data studies have a hard time asking

concrete questions and making specific suggestions regarding measurement. Presented with
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only a general description of concepts of interest and methods applied, probably accompanied

by a few example documents, it is almost impossible to concretely criticize a text-as-data

measurement scheme.

Existing text-as-data methods do not equip researchers with enough tools to systematically

improve validity of text-based measurement in the process of data analysis. Nor is there a

standardized way to output replicable schemes to create measurement from text data.

In this paper, I develop a text-as-data system for valid and replicable measurement. The

system is built on on distributed semantics, an important family of natural language processing

techniques that have just started to receive attention in the political science community. I

provide the first comprehensive introduction of the method to the political science community,

including its intuition and engineering details. I also develop an original system helping

political scientists create text-based measures using distributed semantics.

The rest of this paper is organized as follows: Section 1 identifies the problem of mea-

surement validity and replicability in text-as-data methods with reference to the literature

and outlines my solution. Section 2 introduces the intuition and engineering details of dis-

tributed semantics. Section 3 presents the distributed codebook approach, a workflow help-

ing researchers interpreting and using distributed semantics for document coding. Section 4

introduces All-Text-In-One-Space (ATIOS), a new system that creates valid and replicable

measurement from text data. Section 5 concludes and discusses contributions.

1 Validity and Replicability of Text-as-Data Measurement

Political scientists applying text-as-data methods in their research are often asked two ques-

tions: How valid a measure is a text-based variable? How replicable is the study? A text-as-

data study producing valid measurement convincingly shows its audience how raw text data,

usually large and messy, are mapped to simplified and quantified indicators of concepts and

ideas. A replicable text-as-data study transparently reports its analysis process and data that

enables reproduction, replication, and extension. Many existing text-as-data methods face

limitations in both interpretability and replicability. In this section, I identify the research

question with reference to the existing literature. The first part reviews the development

of text-as-data methods in political science. The second part discusses how state-of-the-art
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methods face limitations in measurement validity and replicability. The third part outlines

my approach to tackling the challenges.

1.1 Text-as-Data in Political Science: A Brief Review

Text-as-data methods emerged in political science studies and other social sciences fields,

empowered by recent development of machine learning and natural language processing tech-

niques. Text-as-data methods assist political scientists in studies of political activities using

language as the medium. Initial applications include using text of treaties to study peace-

making and using text of laws and regulations to study legislation and ideology (see Grimmer

and Stewart, 2013, for a review). Other fields of social sciences embrace the methods. For

example, economists use text data to study stock market volatility, impact of central bank

policies, and economic policy uncertainty (see Gentzkow et al., 2017, for a review). The ap-

plication of text-as-data methods is made possible by the recent rapid development of natural

language processing techniques in computer science, featuring crowdsourced large training

data, increased computational power, and integration with machine learning (especially deep

neural network) algorithms (see Goldberg, 2016, for a review of deep neural network for

natural language processing) .

I classify text-as-data methods into two types, distinguished by the relative role of ma-

chines and humans in making sense of text data. In the first type, machines “read” and

categorize text into groups with minimal human input (except for some model parameters

and random seeds). Humans interpret and validate the groups produced by machines, linking

them to concepts and ideas of interest. The most widely used family of models in this category

is topic modeling with Latent Dirichlet Allocation (LDA). A hierarchical Bayesian model, the

LDA model represents documents as mixtures over latent topics, each of which is character-

ized by a distribution over words (Blei et al., 2003). Extending upon LDA, Structural Topic

Modeling (STM) allows correlations among topics and inclusion of covariates. It has become

an important tool of this type of text-as-data studies in political science (Roberts et al., 2014,

2016). For example, Pan and Chen (2018) apply STM to leaked email text data from commu-

nication within a Chinese propaganda department to analyze selective reporting of citizens’

complaints; Kim (2018) uses STM to code text of Chinese news reports on automobiles to

3



detect and explain media bias against foreign automakers.

In the second type of text-as-data methods, humans “teach” machines how to make sense

of text data. They generally take the following steps: humans code a subset of text data

in light of the ideas and concepts of interest; supervised machine learning algorithms are

trained to “ imitate” human coding; the best algorithms are selected using a standard set of

evaluation metrics; in the end, the best algorithms are used to code the rest of the text data,

and researchers validate and interpret the results. This type of text-as-data methods, broadly

defined, has a long history in political science research. The dictionary approach, where

researchers construct a dictionary mapping words and phrases to concepts and task machines

to look them up in text data, is the simplest algorithm in this type of methods. Among many

applications, political scientists use the approach to classify documents by their tone and

mention of specific topics of interest (see Grimmer and Stewart, 2013, for a review). Simple as

it appears, the dictionary approach can be powerful, even when the data are large and messy.

For example, a recent application in studying censorship in authoritarian China, King et al.

(2013) use a dictionary approach to identify and scrape millions of politically relevant social

media posts in China’s social media sites. Moving beyond the dictionary approach, researchers

employ more complex machine learning algorithms for natural language processing to detect

more complex features from text. Pioneering in the methodological innovation in this type of

methods, King and Hopkins (2010) develop a system to estimate proportions of documents

in categories of interest based on a subset of human-coded documents. King et al. (2017)

apply a combination of methods to code social media posts written by government-sponsored

commentators in China. Recent efforts improve the efficiency of “teaching.” Miller et al.

(2018) introduces an active learning approach which enables machines to learn a satisfactory

coding algorithm with less human labelling effort by iteratively prompting humans to code

“borderline” cases where the current algorithm is indecisive about coding.

Though categorization of methods is not the focus of this paper and this section, I would

like to add a note about the rationale of my categorization scheme, which is different from the

existing literature. I refrain from using the supervised/unsupervised learning dichotomy to

classify text-as-data methods in social sciences. For me, a text-as-data method is a workflow.

The type of machine learning model applied only constitutes a part of a workflow. Equally

crucial and worth explicit characterization is the role of humans in the workflow, because
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interpreting the results and making inferences is the goal of all the political science studies

reviewed. This differs from the literature of machine learning and natural language processing:

their tasks are standardized, goals are mainly prediction, and the human’s role is usually

peripheral.

I highlight the above methods and their application as this paper directly builds on them

with a focus on measurement (detailed in the following sections). However, the research

frontier of text-as-data includes a separate stream of work, to which this paper does not

directly speak but has potential contribution: text-as-data for causal inference. Egami et al.

(2018) develop a workflow where researchers split data into training and test set to avoid

analyst induced SUTVA violation caused by tuning and interpreting text-as-data models.

Roberts et al. (2018) develop Topical Inverse Regression Matching that uses results of STM

to match documents for causal inference with observational text data. Mozer et al. (2019)

develop an experimental study where human respondents evaluate uses of a variety of text

feature representation and text distance metrics in terms of their quality serving as confounder

for matching. In general, these studies treat text as a kind of high-dimensional data, use text-

as-data methods primarily for dimensional reduction (as oppose to measurement), and focus

on discovery of a dimensional reduction scheme that produces unbiased causal estimates.

1.2 Challenges: Valid and Replicable Measurement with Text Data

Political scientists applying text-as-data methods face two challenging tasks: to justify that

variables generated from text correctly map to concepts and ideas of interest; and to discuss

to what extent the findings hold in new data. The former is an inquiry about measurement

validity, and the latter is about replicability. In this section, I discuss how existing works have

addressed the challenges and what remains to be done.

To justify that variables generated from text correctly map to concepts and ideas of in-

terest, researchers should be able to control and describe the intermediate steps of the “trip”

from raw text to concepts. Existing text-as-data methods constrain researchers’ capacity to

do so. Existing literature has identified the challenge and partly addressed it by propos-

ing methods for validation. A comprehensive review of text-as-data methods, Grimmer and

Stewart (2013) suggest four principles for text-as-data application, emphasizing that ma-
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chines cannot replace researchers’ careful reading and that researchers’ extensive validation

of machine coding is crucial (“validate, validate, validate”).1 Methods for validation have

been developed in the computer science community, which political scientists have applied

and extended in recent literature. Chang et al. (2009), an initial work on systematically vali-

dating topic modeling, conduct experiments that show misalignment between human coders’

and machine judgment about the best mapping among words, topics, and documents.2 The

type of validation methods has recently been extended with political text data. Ying et al.

(2019) develop a generic tool to validate political text labeling produced by topic modeling

and researchers’ interpretation of topics. Spirling and Rodriguez (2019) design a “Turing test”

to evaluate the quality of word embedding trained with different parameter setups and data

sources.

While the new validation methods can enhance the audience’s confidence in correct map-

ping between text and concepts, they only address part of the challenges in justifying mea-

surement validity: they at best show that the measurement is correct end-to-end, but they

cannot show how complex intermediate steps, often containing back-and-forth adjustment,

are conducted. To elaborate the point, I outline typical intermediate steps of text-as-data

research with reference to an older literature on content analysis and measurement validity

(Neuendorf, 2002, Chapter 3; Adcock and Collier, 2001). As Figure 1 shows, text-as-data

studies usually start with a set of text data and some initial conceptualization about what

content in the text can be measured with simple and quantified variables. Based on the

two inputs, researchers choose appropriate text-as-data methods (e.g., methods reviewed in

Section 1.1). Models are trained with various types of human input. With output of mod-

els (e.g., fitted parameters and coefficients) and documents coded by the models, researchers

validate the results by judging if they make intuitive sense. Satisfactory results almost never

appear within a single attempt. Researchers adjust the analyses in two ways. First, they

may decide the conceptualization and the models need tuning. For example, random seeds

and numbers of topics in topic modeling may be changed; types and parameters of super-
1(See also Wilkerson and Casas, 2017, a more recent review article pointing out instability of text-as-data

models)
2There have been numerous extensions upon this work in the computer science community. See, for example:

Mimno et al. (2011); Lau et al. (2015). See also Blei (2012) for a review on how topic interpretation and
validation has become a research frontier of topic modeling.
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Figure 1: A General Workflow of Text-as-Data Studies
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vised machine learning may be changed. Second, researchers may find an alternative way

to conceptualize the variable of interest. They may reconsider choice of models and re-train

models accordingly. The steps are repeated until the models’ output and coded documents

pass researchers’ validation, which allows researchers to finalize their measurement. This is

a long and complex process, which goes undocumented in most applications of text-as-data

methods. Even with the latest development of validation methods (e.g., Ying et al., 2019),

researchers still face challenges convincing their audience that this iterative process of adjust-

ment is conducted correctly. The problem is worse when the dataset is large and when models

are complex. Given the state-of-the-art, I argue that an important avenue for contributions

in text-as-data methods is development of systems that standardize and clearly document the

iterative process in its intermediate steps.

A related but different challenge with text-as-data measurement is replicability. The

challenge of replication in text-as-data research has unique features distinguished from other

types of political science empirical studies, which has not been extensively discussed. The call

for replication is a symbolic feature of modern scientific inquiry in political science. To produce
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replicable work, researchers are advised to publicize the exact process of data generation and

analysis for evaluation (King, 1995). I argue that a unique replicability challenge for text-

as-data measurement is to publicize a measurement model containing enough information to

help produce the same kind of measurement with new data. Note that this is an issue related

but different from the lack of documented iterative steps discussed above, whose crux is the

process being untraceable and unexplainable. The crux of the replicability challenge is the

output of the measurement exercise being uninterpretable and unusable by researchers trying

to follow up. As is shown in the bottom row of Figure 1 (the three shaded nodes), existing

text-as-data studies publicize three types of information for replication: finalized concepts,

chosen text-as-data models, and coded documents. First, researchers describe the concept

measured by text data (e.g., incivility of a social media post; ideological leaning or issue

area of a legislative bill). Second, researchers describe the chosen text-as-data models used.

Studies describe the models with different levels of specificity. Most political science studies

briefly describe the models’ architecture and the softwares applied, while only a few share

detailed parameters of the trained models. Third, researchers share the coded documents.

Due to constraints such as data protection, a significant proportion of studies do not share

raw text. A table mapping document ID to coding is the usual form of output. With these

types of output, it is challenging to replicate studies with text-as-data measurement, primarily

because the link between concepts and coded documents is usually neither interpretable nor

generalizable to other data. As shown in Figure 1, finalized concepts and coded documents are

connected through chosen text-as-data methods. The models can be complex and unstable.

Thus it may not be conveniently interpreted on what explain the mapping.3 Also, models

trained with a specific dataset may not generalize to other datasets, blocking researchers’

way to directly apply the original paper’s trained text-as-data models (in rare cases that are

shared) to their new data.
3Note that political methodologists are making efforts to make complex models interpretable. See Roberts

et al. (2014) for the STM R package which provides a user-friendly interface to fit and visualize topic models.
See also Sanford et al. (2019) for a recent contribution to interpreting deep neural network models for political
text.
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1.3 My Approach: Stepwise Guidance and Informative Representation

I suggest that two design features of text-as-data systems facilitate production of valid and

replicable measurement. First, when the system can take human “guidance” in a stepwise

manner (as opposed to only allowing validation after the final step of a long process), re-

searchers gain control and understanding of how intermediate steps are systematically done

right. Second, when the system’s final output contains informative representation of concepts,

documents, and their relation, readers can conveniently transfer the measurement scheme to

new data. The former increases measurement validity. The latter increases replicability.

To build a text-as-data system that takes stepwise “guidance” from human, I divide it into

modules, with each module containing an “encoder” and a “decoder” of intermediate output.

First, I modularize the system, with each module processing a part of the measurement task.

Each module (which usually contain a machine coding algorithm) is simple and stable enough

for researchers to validate, intervene, and confidently choose an optimal solution for a part

of the measurement task. Second, each module contains an “encoder” to transform human-

readable text to machine-readable numeric representation and a “decoder” that transform

numeric model output back to human-readable content to facilitate researchers’ validation

and intervention.

To build a text-as-data system producing informative output, I represent concepts, doc-

uments, and their relationship with rich numeric values transferable across text datasets. A

common practice in state-of-the-art content analysis, researchers simplify results into verbal

descriptions of finalized concepts and coding of documents. This loses a large amount of in-

formation that would have been valuable for replication. I use distributed semantics, a family

of text representation models, to create a new type of interpretable and replicable output for

text-as-data studies in political science.

In the following sections, I present a new text-as-data system that integrates the two design

features. The system, namely All-Text-In-One-Space (ATIOS), introduces a new way for

political scientists to incorporate distributed semantics, one of the best innovations in natural

language processing in recent years, in their workflow of text-as-data measurement. Figure

2 presents an overview of the system. ATIOS contains two major steps, to be elaborated

in detail in Section 2 and 3. The first step obtains informative representation of text by
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Figure 2: All Text In One Space (Simplified workflow)
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applying distributed semantics, a new natural language processing algorithm representing

text with low-dimensional dense vectors. The second step, building on distributed semantics,

combines machine learning algorithms and human evaluation to build and apply a distributed

codebook to code documents. The system outputs a set of information that forms valid and

replicable text-as-data measurement: description of concepts of interest, coded documents,

and a distributed codebook that not only precisely maps concepts to documents but is also

generalizable for replication.

2 Informative Representation: Distributed Semantics

Core to my system for valid and replicable text-as-data measurement, distributed seman-

tics is a type of methods to create text representation that quantifies and categorizes their

meanings. Recent innovation in natural language processing finds efficient algorithms to learn

meanings of words, sentences, and documents from large text datasets and represent them

as low-dimensional dense numeric vectors. The methods have proven powerful in increasing

predictive accuracy in many standard natural language processing tasks. In addition, evi-

dence shows that the representation uncovers linguistic regularity. Despite its promise, the

method needs adaptation to fit the needs of text-as-data studies in political science. In this

section, I introduce the methods of distributed semantics. The first part presents an overview

of distributed semantics. The second part introduces how distributed semantics are generated

in one of its most popular algorithms, word2vec. The third part discusses why its existing ap-

10



plications are incompatible with my goal, valid and replicable measurement and then outlines

how I build a new system to serve my goal.

2.1 Distributed Semantics: An Overview

Distributed semantics is a new method based on an old idea: it is based on an idea that

linguists proposed over six decades ago; computer scientists have built on it to make one of

the best innovations for automated natural language processing in the past decade.

Distributed semantics is based on a simple linguistic idea called the distributional hy-

pothesis: words that occur in similar contexts have similar meanings (see, for example, Joos,

1950; reviewed by ?, Chapter 6). This idea has the power to categorize both known and un-

known words. To elaborate, I use a simple example. Suppose we are presented the following

four sentences: “Beijing is the capital of China.” “Tokyo is the capital of Japan.” “Berlin is

the capital of Germany.“ “Paris is the capital of France.“ Common sense tells us that China,

Japan, Germany, and France are names of countries and Beijing, Tokyo, Berlin, and Paris

are names of their capital cities respectively. However, assume a reader does not have this

common sense, he can still apply the distributional hypothesis to categorize words and infer

their relationship: Beijing, Tokyo, Berlin, and Paris belong to one category as they all appear

before“is the capital of”; China, Japan, Germany, and Paris belong to another category as

they all appear after “is the capital of”; The former has some relationship with the latter,

moderated by the phrase“is the capital of.”Moreover, a reader can use categorization learned

with the distributional hypothesis to understand new words. Assume a reader is presented

with a fifth sentence “Ngerulmud is the capital of Palau.“ If he is unfamiliar with countries

in the Pacific Ocean, he can recognize that Palau is a country and Ngerulmud is its capital

city. Even if he has no common sense in geography, he can at least understand: Ngerulmud

belongs to the same category as Beijing, Tokyo, Paris, and Berlin; Palau belongs to the same

category as China, Japan, Germany, and Paris; the two have the same relationship moderated

by “is the capital of.”

The above example also helps demonstrate three intuitions of the distributional hypothesis,

which transfer to distributed semantics. First, contexts are local. The text in my example

is short, making it reasonable to use all other words as context to infer a word‘s meaning.
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When a piece of text is long (common in most real-world text data), it should be divided

into multiple context windows. Second, the distributional hypothesis helps learn relative

relationships between words. But it cannot make sense of their absolute meanings. In the

above example, a reader’s lack of common sense in geography can use distributive hypothesis

to infer that Beijing, Tokyo, Paris, and Berlin, and Ngerulmud belong to the same category.

He cannot know that they are capital cities without additional information. Third, learning

with distributional hypothesis need a lot of text. The above example sentences are simple and

clean. And I started with a clear mind which words are of interest (e.g. “is,”“the”are not

words of interest). This enables inferences with only four sentences. Real-word text data are

messier (e.g. large vocabulary, variety of ways to express the same meaning) and researchers

start with few assumptions about what words are of interest. As a result, it requires a lot of

text to learn meanings of text with the distributional hypothesis.

Algorithms of distributed semantics perform the above exercise with standardized proce-

dures and quantified output (elaborated in Section 2.2). Recent computer science research

builds on the distributional hypothesis to create vector representation of words that re-

flects their meanings. Prior to the prominence of distributed semantics (as in most text-

as-data methods reviewed in Section 1.1), words have atomic representation in automated

natural language processing systems: A word is represented by a numeric index that has

no relation to its meaning. A document is represented by a list of indices of words ap-

pearing in it. In contrast, distributed semantics represents words with vectors of numeric

values that best “describes” in what context it appears, which in turn represents its mean-

ing. Note that a single dimension of this vector has no interpretable meaning: it doesn‘t

represent a topic, intensity of a type of sentiment, or count of a linguistic element. How-

ever, a word vector represents its meanings as evident in multiple interpretable ways. First,

words with similar syntactic or topic meaning have word vectors numerically close to one

another. For example: vBeijing ≈ vTokyo ≈ vParis ≈ vBerlin.4 Second, analogy of words can

be captured by simple linear operations between word vectors (Mikolov et al., 2013). For

example: vChina − vBeijing ≈ vJapan − vTokyo ≈ vGermany − vBerlin. Third, adding word vec-

tors results in meaningful representation of larger text units: Adding vectors of words in a

phrase results in a valid representation of the phrase [an example in Mikolov et al., 2013,
4vw denotes the word vector of a word w.
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vRussian + vriver ≈ vVolga + vriver]; A weighted sum of vectors of words in a document makes

a valid representation of the document (Iyyer et al., 2015; Mitchell and Lapata, 2010; Arora

et al., 2017).

2.2 Learning Distributed Semantics from Data

How do machines learn distributed semantics from text data? In this part, I introduce how

word vectors are trained. First, I give an overview of the rationale. Second, I introduce

technical details of two foundational and most popular algorithms for distributed semantics:

word2vec by Mikolov et al. (2013) and GloVe by Pennington et al. (2014). Third, I discuss

the differences among variants of the type of algorithms, how they are applied, and what is

to my interest in my system.5

Machines assign words with numeric vectors so that mathematical operations among these

vectors can best explain “which words likely appear with which words in what context”, given

the text data. Differences among algorithms map into different parts of this non-technical

description. First, the operationalization of “which words likely appear with which words”

is the major difference among two types of algorithms. “Prediction-based” algorithms oper-

ationalize it into a prediction problem: the machine passes through all the text, divides it

into local context windows, and learns word vectors to have words best predict the existence

of one another within each window. On the other hand, “cooccurrence-statistics-based” al-

gorithms first construct a matrix with statistics for how often each pair of words co-occurs

and then learn word vectors that best approximately reconstruct the matrix. Second, what

information counts towards “context” varies among algorithms and implementations. Most

conventional algorithms use word vectors as context, though the size of the context window

(i.e., numbers of words before and after the target word) are subject to users’ discretion. In

recent development, algorithms incorporate other semantic information of words, sentences,

and paragraphs as context.
5To my knowledge, this is the first systematic introduction of the methods‘ technical details to the political

science community. While this is an original introduction, it refers to a variety of sources including textbooks,
review papers, and code (as the original papers introducing the methods do not provide enough engineering
details). This part is written with the aim to introduce the models‘ intuition and engineering techniques
without going into excessive details. Major references are listed below. Textbooks: Eisenstein, 2019; Jurafsky
and Martin, 2019. Review articles: Rong (2014); Goldberg and Levy (2014); Goldberg (2016). Original papers:
Mikolov et al. (2013,?); Pennington et al. (2014).
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2.2.1 word2vec

word2vec is a foundational prediction-based algorithm for distributive semantics. It has two

variants: the Skip-gram model and the Continuous Bag-of-Words (CBOW) model. The dif-

ference between the two lies at the specific task of prediction performed. As shown in Figure 3,

the Skip-gram model (on the right) predicts context words with the target word; the CBOW

model (on the left) predicts the target word with context words. Thus, the definition of

likelihood functions slightly differs, leading to different optimization tasks.

Figure 3: Two Variants of word2vec: Skip-gram and CBOW

Source: Eisenstein (2019, Chapter 14)

To formalize, I start with the following setup: Consider a sequence of text of T words in

total. Let the size of context windows be c (i.e., c’s immediate neighbors before and after a

word are considered its context). Let v(w) be the vector of distributed semantics of word w.

Let the size of the vocabulary be V , (i.e., there are V unique words in the text). Let p(wi|wj)

be the probability of word wi appearing, given word wj . Let L be the likelihood.

The word2vec uses the a softmax function to link distributed representation of words (word

vectors) with their predicted probabilities. Specifically, the probability of word wi given word

wj in its context window is the exponential of the dot products of the word vectors vwi , ṽwj

over the sum of the exponentials of the dot products of ṽwj with word vectors of all words in

the vocabulary:

log p(wi|wj) = log
exp(vT

wi
ṽwj )∑V

k=1 exp(vT
wk

ṽwj )
(1)

= vT
wi

ṽwj − log
V∑

k=1

exp(vT
wk

ṽwj ) (2)
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Thus, the log-likelihood of the Skip-gram model is computed as follows. At location t of the

text sequence, the joint conditional probability of words in the context window (conditional on

the target word at t) is calculated. The conditional probabilities are obtained by applications

of softmax on the target word vector against each context word vector. Then the algorithm

moves to location t+1 and repeat the process until the end of the sequence. The log-likelihood

is the sum of all log probabilities. Formally:

logL =

T∑
t=1

∑
−c≤j≤c,j ̸=0

log p(wt+j |wt) (3)

=
T∑
t=1

∑
−c≤j≤c,j ̸=0

log
exp(vT

wt+j
ṽwt)∑V

k=1 exp(vT
wk

ṽwt)
(4)

=

T∑
t=1

 ∑
−c≤j≤c,j ̸=0

vT
wt+j

ṽwt − log
V∑

k=1

exp(vT
wk

ṽwt)

 (5)

Similarly, the log-likelihood of the CBOW model is computed as follows: at location t

of the text sequence, the probability of target word given context words is calculated. The

conditional probability is obtained by a softmax of the target word vector and the average of

context word vectors. Then the algorithm moves to location t + 1 and repeats the process

until the end of the sequence. The log-likelihood is the sum of all log probabilities. Formally:

logL =
T∑
t=1

log p(wt|wt−c, wt−c+1, ...wt+c−1, wt+c) (6)

=
T∑
t=1

log
exp(vT

wt
v̄t)∑V

k=1 exp(vT
wk

v̄t)
(7)

=
T∑
t=1

[
vT
wt

v̄t − log
V∑

k=1

exp(vT
wk

v̄t)

]
(8)

where v̄t =
1

2c

∑
−c≤j≤c,j ̸=0

ṽwt+j (9)

Both Skip-gram and CBOW models train vector representations of words to maximize

the above defined likelihood. The processing is operationalized as neural networks trained

by stochastic gradient descent. Figure 4 shows the models‘ architecture. In general, they

are both neural networks with one hidden layer and two weight matrices. The first weight
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matrices WV×N contain vector representations of all V words as targets in the vocabulary:

WV×N = [vw1 ,vw2 , ...,vwN ]
T . The second weight matrices W̃N×V contain vectors of words

as context: W̃N×V = [ṽw1 , ṽw2 , ..., ṽwN ]. Input and output layers are one-hot-encoded words.

The differences between Skip-gram and CBOW are evident in the model architectures. Skip-

gram (Panel a) uses target words to predict context words, while CBOW (Panel b) uses

context words to predict target words. Word vectors are updated with stochastic gradient

descent. For final output, researchers can use either of the two weight matrices WV×N ,W̃T
N×V

or the two matrices’ average as words‘ representation of distributed semantics.

Figure 4: The Neural Networks of word2vec Models

(a) Skip-gram (b) CBOW
Note: The figure demonstrates how algorithms Skip-gram and CBOW fit the text data in a neural network.

This visualization is created by Rong (2014).

Training word2vec models can be computationally taxing. Two methods are used to reduce

the computational demands of the model: hierarchical softmax and negative sampling. The

algorithm in its naïve version described above can be computationally taxing primarily because

the complexity of the softmax step (Equation 1) grows linearly with the vocabulary size (i.e.,

O(V ) complexity): in the forward pass, it takes summations over the whole vocabulary of

size V for the denominator; in the backpropagation, it updates all V word vectors in the

vocabulary. Two methods have been developed to boost efficiency. First, hierarchical softmax
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uses a binary tree where words are represented by their leaf units. The probability of a word

being the output is estimated by the probability of the path from root to leaf of the word. The

method reduces computational complexity from O(V ) to O(log2 V ) given its tree structure. A

second and more intuitive method, negative sampling, takes a random sample of words from

the vocabulary to approximate the denominator in the forward pass and to update only the

sample in the backpropagation. Thus, the computational complexity depends on the size of

the negative sample and does not grow with the vocabulary size. The two methods have both

demonstrated good performance in existing applications.

2.2.2 GloVe

The GloVe model is the most popular co-occurrence-statistics-based algorithm to learn dis-

tributed semantics of words. The most important distinction between this model and word2vec

is that it operationalizes context data in a different way. Recall that word2vec walks through

the whole sequence of text to predict. GloVe walks through the whole text sequence to count:

the model starts by constructing a matrix of co-occurrence statistics, indicating the number

of times each pair of words in the dictionary co-appear in the same context window. As it

naturally follows, the objective of the model is to best predict this matrix of co-occurrence

counts. Formally, let logXwi,wj be the logarithm of the actually number of times word wi

and wj co-appear in the same context; let ˆlogXwi,wj be the predicted logarithm of number of

times words wi and wj co-appear. The square loss of predictive performance for a word pair

wi, wj is:

( ˆlogXwi,wj − logXwi,wj )
2 (10)

With the above square loss, a crucial step is to link vectors of distributed semantics to the

count statistics and the above objective function. A key innovation of the GloVe model, the

predicted logarithm of two words‘co-appearance count, is modeled as the multiplication of

their word vectors plus two bias terms. Formally:

ˆlogXwi,wj = vT
wi

ṽwj + bwi + b̃wj (11)

17



vwi is the word vector of target word wi; ṽwj is the word vector of context word wj . bwi , b̃wj

are two bias terms not used in the final output. Note that the above link function is chosen

for exchange symmetry: in this model, wi being the context of wj is equivalent to wj being

the context of wi. 6 7

The final step to set up the objective function is to aggregate square losses of all pairs

with some weighting scheme. The design of this final step is considered the decisive factor

of the success a co-occurrence-statistics-based algorithm. In general, frequent co-occurrences

should be weighed up, but not too much so. In one extreme, rare and frequent word pairs are

assigned the same weight, then rare cooccurrences which contain lots of noise can harm the

performance. At another extreme, if pairs are weighted by their occurrences, then frequent

words dominate the training. The GloVe model weighs the cooccurrence statistics by count

with some smoothing. Specifically, Let f(Xwi,wj ) be the weight assigned to the pair of words

wi, wj , the objective function of GloVe is as follows:

J =
V∑
i=1

V∑
j=1

f(Xwi,wj )
[
vT
wi

ṽwj + bwi + b̃wj − logXwi,wj

]2
(12)

f(Xwi,wj ) =

 (Xwi,wj/xmax)
α if Xwi,wj < xmax

1 otherwise
(13)

where 0 < α ≤ 1 and xmax is a positive number no greater than the maximum number of

co-occurences in the dataset. In the original GloVe experiments, xmax is set to 100.

With the above objective function, the optimization problem is to minimize J with respect

to a set of word vectors v and biases b. A variety of gradient descent algorithms are good for

this optimization task. Gradients are defined as follows:

∇vwi
J =

V∑
j=1

f(Xwi,wj )
[
vT
wi

ṽwj + bwi + b̃wj − logXwi,wj

]
ṽwj (14)

∂J

∂bwi

= f(Xwi,wj )
[
vT
wi

ṽwj + bwi + b̃wj − logXwi,wj

]
(15)

6Despite symmetry, the GloVe model, like word2vec, assigns to a word w two vectors: a target word vector
vw and a context word vector ṽw.

7Pennington et al. (2014), the method’s original paper, has an extended elaboration of the choice of this
link function with reference to linguistic regularity and mathematic properties of the functions. I skip the parts
and only summarize the intuition here.
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Finally, regarding computational complexity, the GloVe model scales sub-linearly with

regards to the length of the text sequence T , outperforming word2vec, as its authors posit.

The complexity of GloVe depends on number of co-occurring words, while that of word2vec

depends on the total length of the text data. Recall that word2vec walks through the whole

text sequence of length T , making complexity of one iteration through all data O(T ). In

comparison, GloVe scales no worse than O(V 2), that is, the maximum number of pairs of

co-occurring words. This size could be huge especially when the dictionary is large. However,

according to the assessment of GloVe’s authors, the total number of co-occurring words |X|

of a long sequence of text is usually much less than V 2. They estimate |X| = O(T 0.8), leading

to the conclusion that GloVe outperforms word2vec in computational complexity (Pennington

et al., 2014, Section 3.2). But later work refutes the claim (See Levy et al., 2018, p. 220).

2.2.3 Which algorithm is better?

With the architecture of word2vec and GloVe explained, I conclude the section by addressing

an important question: Which algorithm is better? Existing research shows that neither

algorithm dominates, while careful choice of parameters is critical.

Which algorithm is better? Existing works compare the two by discussing the similarity

of their architecture and the differences between their performance in a variety of tests. First,

studies show that the architecture of word2vec share a lot in common. Pennington et al.

(2014) shows that GloVe can be considered a ”global skip-gram” model: grouping Skip-gram’s

softmax terms globally by word co-occurrences, the objective function is close to that of

GloVe. In addition, Levy and Goldberg (2014b) shows that a Skip-gram model with negative

sampling is implicitly factorizing a word-context matrix of pointwise mutual information.

Second, tested with a set of standardized tasks, neither algorithm dominates. Although the

paper introducing GloVe claims that it beats word2vec in speed and accuracy, later assessment

refutes it (Levy et al., 2018). A recent evaluation with political text also shows results of the

two methods are not significantly different (Spirling and Rodriguez, 2019).

While it is not clear which algorithm is better, it is clear that careful choice of parameters

is critical to the success of both algorithms. The two most important parameters are size

of word vectors and length of context windows. First, size of word vectors (i.e., the num-

ber of dimensions) should be small enough for computational efficiency but large enough to
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capture the meaning of words in a numeric space. As a rule of thumb, applications typically

set the size as several hundred. Experiments with standardized tasks show that increasing

word vectors beyond 300 dimensions has little marginal gain. Second, the length of context

windows determines which words are considered “similar”, which then determines which word

vectors are made close to one another in the numeric space. Models with a small context win-

dow assign similar vectors to words of similar syntactic functions, while models with a large

context window assign similar vectors to words of similar semantics and topical belonging.

For example, with a small context window, the word “Hogwarts” (a fictional school from the

Harry Potter series) has a word vector close to other fictional schools such as “Sunnydale”

(from Buffy the Vampire Slayer). With a larger context window, the same word has a vector

close to other words related to Harry Potter such as “Dumbledore” and “Snape,” names of

characters in the series (Jurafsky and Martin, 2019, Chapter 6; Levy and Goldberg, 2014a, p.

305). Beyond vector size and length of context window, a set of other parameters also affects

performance: the choice of a weighting scheme to eliminate infrequent words and down-sample

frequent words affects the quality of vectors and the size of the final dictionary; the number

of iterations run affect the models’ ability to converge to good word vectors that optimize

their objective functions by gradient descent.

2.3 Distributed Documents: A Bag-of-Word-Vector Approach

The algorithms of distributed semantics learn informative representation for words, the basic

units of text. However, to create measurement with text data, researchers care about larger

units of text: documents and concepts. In this section, I introduce how to create informative

representation for documents and concepts based on distributed semantics of words. Contrary

to the complex modeling for word vectors discussed in Section 2.2, I use simple models to

link words to documents for two reasons. First, with a set of useful properties of word

vectors, simple models suffice. Second, simple models make human validation and intervention

convenient.

I use a bag-of-word-vector approach to obtain distributed semantics of documents using

learned distributed semantics of words. The design is simple, but its justification is non-trivial.

The model for distributed semantics of documents is simple: For a document, I take a
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weighted sum of distributed semantics of all words appearing in it. I call it a bag-of-word-

vector approach as it, just like the bag-of-word approach, disregards the order of words in

a document. Formally, let D represent the collection of documents. Let di be a document

in the text dataset, represented as a collection of words di = {w1, w2, ..., wMi} where Mi is

the number of unique words document di contains (the number of words may differ across

documents). Let v(di) be the distributed semantics of document di. Let f(di, wj) be some

weight assigned to word wj in document di. Also, vwj is the distributed semantics of word

wj , as defined in Section 2.2.

v(di) =
∑
wj∈di

f(di, wj)vwj (16)

Following common practice in bag-of-word methods, I use the TF-IDF algorithm to weight

word vectors in aggregating them into a document vector. Compared to a simple count,

the method weights down words appearing frequently in a document with a non-linear term

frequency function and weighs down words appearing in many documents with an inverse-

document-frequency normalizer. This specification of TF-IDF algorithm follows Jurafsky and

Martin (2019, Chapter 6).

f(di, wj) = tfdi,wj
× idfwj (17)

tfdi,wj
=

 1 + log10 count(di, wj) if count(di, wj) > 0

0 otherwise
(18)

idfwj = log10
|D|
dfwj

(19)

where count(di, wj) denotes the number of words wj in document di. dfwj denotes the number

of documents containing word wj . |D| denotes the total number of documents.

Taking the summation of distributed semanticsof words disregarding their order, is justi-

fied by their property of compositionality. Word vectors are compositional: the meanings of

a phrase can be represented by the summation of vectors of words in the phrase. This impor-

tant property is demonstrated in a set of examples by the authors of word2vec. For example,

a trained word semantics can tell Lufthansa is a German air carrier as vGerman + vairline is

close to vcarrier + vLufthansa (Mikolov et al., 2013, p. 7). The property of compositionality

of short phrases is extended to longer documents in a few studies. Aggregating word vectors
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with multiplicative and additive functions has proven effective in cognitive studies (Mitchell

and Lapata, 2010). Representing documents by averaging vectors of words shows good per-

formance in natural language processing tasks like sentiment analysis and question answering

(Iyyer et al., 2015).

Admittedly, the simple linkage model is a radical simplification compared to existing appli-

cations in natural language processing. Many distributed semantics algorithms for documents

use more complex modeling. For example, the doc2vec model learns a document-specific vector

in each context window (Dai et al., 2015; Le and Mikolov, 2014). In the training processing,

document-specific vectors are used as target and context in addition to word vectors (con-

sider it the “document fixed-effect”). The Skip-thought model encodes distributed semantics

of a sentence as a hidden layer of the final stage of a recurrent neural network and optimizes

its predictive power of vectors of neighboring sentences (Kiros et al., 2015). In addition,

word vectors are stacked by their order in documents and modeled with convolutional neural

networks (Kim, 2014). On top of these examples, most deep neural network modeling aggre-

gating distributed semantics of words into documents does not take the type of simplification

I do. They have good reason not to do so: retaining information helps prediction. However,

prediction is not the goal of my system.

I choose this simple model to achieve the important design feature for valid and replicable

text-as-data measurement: informative representation. I achieve informative representation

by embedding words, documents, and concepts in one space – one stable and generalizable

space. Complex modeling fails the goal of mapping all text in one space, stability, and general-

izability. First, when distributed semantics of documents go through complex transformation

from word representation, they are no longer in the same space, making it hard for researchers

to make sense of the relationship between vectors of words and vectors of documents. Sec-

ond, the results are more unstable when I use more complex models in the system. Neural

network models use stochastic optimization algorithms to learn parameters, which do not

find global optimum. A system with multiple components of complex models that outputs

unstable locally optimal parameters imposes challenges for researchers’ evaluation and inter-

vention. Last but not least, results learned by fitting complex models to a specific dataset

are less generalizable. Words are phrases are used in similar ways across text data. Thus,

their distributed semantics learned in one dataset can be used in another. With complex
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modeling, word vectors reflect too much of document-level features of the dataset and cannot

be generalized, defeating the purpose of using distributed semantics in the first place.

2.4 Decoding Distributed Semantics for Validation

Now that we have gone through the technical challenges to learn distributed semantics from

data, how do we make sense of it? Put another way, after the meaning of words and documents

has been “encoded” by algorithms, how can it be “decoded” again? Distributed semantics are

several-hundred-dimensional vectors whose individual dimensions do not have interpretable

meanings. This imposes challenges against researchers’ evaluation.

A simple decoding method, a piece of distributed semantics can be decoded by reviewing

the set of text whose vectors are close to it. Though absolute values of distributed semantics

have no interpretable meanings, relative positions do. With this property, existing works

usually evaluate the quality of distributed semantics by examining whether text considered

similar by machines makes sense to humans. Cosine similarity is typically used to quantify

the closeness of word vectors:

cos(vwi ,vwj ) =
vT
wi

vwj

||vwi || × ||vwj ||
(20)

This distance metrics is chosen over the others because it is scale invariant (the lengths of

vectors are normalized in the denominator), and it is close to the objective functions of the

algorithm (taking the dot product of word vectors). Note that, although cosine similarity is

the most common similarity measure for vector semantics, as long as they are standardized

(i.e. ||vwi || = ||vwj || = 1), the Euclidean distance is simply a linear transformation of the

cosine similarity measure:8

||vwi − vwj ||2 = ||vwi ||2 + ||vwj ||2 − 2vT
wi

vwj (21)

= ||vwi ||2 + ||vwj ||2 − 2||vwi || × ||vwj || cos(vwi ,vwj ) (22)

= 2− 2 cos(vwi ,vwj ) (23)

8I make use of this property when I fit word vectors into clustering algorithms that use Euclidean distance
as distance metrics.
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The decoding method is typically used to evaluate algorithms of distributed semantics:

cosine similarity is expected to capture generic language features of words. Two types of

standardized tasks are usually performed: word similarity/relatedness and word analogy.

The former identifies a set of words, rates their similarity and relatedness by cosine similarity

of word vectors, and then compares it with scores assigned by human coders. The latter

examines if word analogy (e.g., Beijing is to China as Tokyo is to Japan) found by linear

operations of word vectors and cosine similarity matches with human coders’ judgment. For

both tasks, there exist multiple widely accepted “ground-truth” datasets created by different

researchers (see Levy et al., 2018, p. 217 for a review). My experiments show that the same

method can validate distributed semantics of documents by examining if documents with close

vectors are similar in their substantives.

2.5 Summary

In this section, I introduce distributed semantics, a new family of language processing algo-

rithms that produces informative representation of text with low-dimensional dense vectors. I

elaborate both the methods’ general intuition and engineering details of two of its most impor-

tant models: word2v and GloVe. I then introduce methods to aggregate word-level distributed

semantics into document-level distributed semantics and methods to validate results.

Although distributed semantics has been widely applied in the natural language process-

ing community, it has not been designed for or applied to text-as-data measurement in ways

political scientists need. In typical applications, distributed semantics are used as tools for

dimensional reduction and noise reduction. First, in standard natural language processing

tasks with machine learning (e.g., sentiment analysis, named entity recognition, semantics

parsing), input text data are embedded with pre-trained or locally trained distributed seman-

tics primarily to increase generalizability of learned models. Second, in predictive modeling

using text as predictors, text is treated as simply a type of noisy high-dimensional data, for

which distributed semantics is applied to improve predicted performance. Neither typical

applications use the method to understand text data and create measurements out of it. I

develop a new system for political scientists to use distributed semantics for measurement,

elaborated in Sections 3 and 4.
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3 Stepwise Guidance: Building a Distributed Codebook

All systems for text-as-data measurement explicitly or implicitly build codebooks. A code-

book is essential to a text-as-data study because it guides the decision on how raw text is

transformed to quantified and simplified indicators. I argue that good codebook building

should have the following three qualities: good coverage of data, relevance to concepts, and

replicability of the final product. First, good coverage of data means a thorough understand-

ing of what is in the text. A codebook usually selects only a small proportion of relevant

information in the text data. But its building should be informed by the “universe” of the

data. Second, codebook building relevant to concepts allows researchers to: incorporate prior

information about concepts of interest, adjust concepts with reference to data, and precisely

map the final coding scheme to final conceptualization. Third, a replicable codebook can

be conveniently applied to other datasets in follow-up observational or experimental studies.

State-of-the-art methods face limitations on at least one of these dimensions. In this section,

I introduce a new method based on distributed semantics to improve the quality of codebook

on all three dimensions for text-as-data measurement.

Existing text-as-data methods face a trade-off between coverage of data and relevance to

concepts, while all have limitations in replicability. Recall that text-as-data methods can be

categorized into two types in terms of whether machines or humans take the “lead” (see Section

1.1). First, in systems where machines “read” with minimal human input, coverage of data is

maximized but relevance to concepts is sacrificed. Consider topic modeling, the most popular

algorithm of the type. The algorithm maximizes coverage of data as it automatically creates

a “coding scheme” considering all data. However, its relevance to concepts is low: with the

algorithm’s design, researchers can hardly use prior conceptualization to guide it; adjusting

concepts with reference to intermediate output and mapping concepts to final output are

also difficult because topics can be unstable and lack interpretability. Second, systems where

humans “teach” machines face completely different challenges. Their relevance to concepts

is high, as human coders have full control over the dictionary they apply, the subset of data

they read, and in which way they want to link text data to their concepts. However, the

coverage of data is low because researchers have little systematic understanding of what is

in the data beyond the part they read. This problem is severe especially when the size of
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data is far beyond human readers’ capacity (e.g., millions of social media posts). Finally, for

both types of methods, replicability is challenging: Coding rules in pure human coding and

machine coding can be both hard to explain and not generalizable to new data.

I develop a new codebook building system, distributed codebook, to eliminate the trade-off

between data coverage and relevance to concepts, and to improve replicability. The system

is built on two simple principles: First, work with words, not documents; second, integrate

judgments of humans and machines.

Principle 1: Work with words, not documents. I argue for three reasons to work with

words instead of documents: political scientists care about words; working with words re-

duces data dimensionality; distributed semantics makes working with words pleasant. First,

with recent techniques, researchers can quantify text in a large set of documents without

examining the full dictionary of words from which they are drawn. However, interpreting

text-as-data studies, political scientists primarily care about words: When analyzing results

of topic modeling, researchers make sense of a topic by reading the top words associated

with it; when quantified text is fit into supervised learning models, researchers interpret the

coefficients or variable importance associated with indicators of a word or a group of words

(e.g., a topic); when findings of observational text-as-data studies are taken to experiments,

treatments are operationalized as words. The extensive use of words in interpretations makes

it important to bring them back as the focal point. Second, working with words reduces the

dimensionality of data, especially when the number of documents grows. In the “small data”

era, it is efficient working with documents because the number of words outnumbers that of

documents: consider the case where researchers study hundreds of documents that likely use

tens of thousands of unique words. However, in the big-data era where researchers work with

millions or billions of documents (e.g., social media posts), the situation is reversed. Now it

is more efficient working with small of units of text like words re-used in many documents.

Third and to the core of this paper, distributed semantics of words creates a space to link

words, documents, and concepts, and to bridge prior information and data. It makes it much

more pleasant to work with words than before. For these three reasons, the system focuses

on words in development of codebooks, while putting documents in the background.

Principle 2: Integrate judgments of humans and machines. The system attempts to com-

bine strengths of machines and humans for research with large and messy text data. Social
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scientists starting a text-as-data research project with a large text dataset and some prior

conceptualization iteratively perform three tasks: link a part of data to pre-formed concepts;

adjust conceptualization in light of the data; and, importantly, discard a large proportion of

irrelevant information in the data. Machines are powerful in summarizing and searching for

information quickly in the full data space. But they cannot link data to concepts or discard

irrelevant information. Humans are good at making sense of data. But they only have the

capacity to make judgment on a selection of data. I develop a standardized procedure to

combine distributed semantics, unsupervised machine learning models, and human reading,

to facilitate the three tasks, with a goal to produce stable and interpretable codebooks.

The rest of this section introduces my system for distributed codebook building. Section

3.1 introduces how to summarize concepts from data. Section 3.2 introduces how to combine

prior information of concepts with data. Section 3.3 discusses methods to apply a distributed

codebook to a dataset of documents. Finally, Section 3.4 summarizes and discusses how the

method of distributed codebooks is related to existing methods.

3.1 Exploratory Concepts Clustering

What concepts of interest do the text data contain? Researchers usually want to induc-

tively learn from the data to help conceptualization. But the size of the text data can be

overwhelmingly large. I introduce a simple method to summarize concepts from data: ex-

ploratory concepts clustering. I suggest fitting distributed semantics of words to unsupervised

learning models to assist with the task. Intuitively, I assume that words in the dictionary are

generated from a set of concepts. Then, operationalizing it in the space of distributed seman-

tics, word vectors can be clustered with unsupervised learning models for high-dimensional

continuous variables. Thus, clusters learned by machines can represent concepts.

I model the distributions of word vectors and concepts with a Gaussian Mixture Model

(GMM), a natural choice for the type of task. Let vwi be the N -dimensional distributed

semantics of word wi. Assume a word wi is generated from a mixture of K concepts, then its

word vector vwi is modeled as generated from a mixture of K multivariate normal distribu-
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tions. For a word wi, the distribution of its word vector vwi is modeled as below:

p(vwi) =

K∑
j=1

p(vwi , cwi = j) (24)

p(vwi , cwi = j) = p(vwi |cwi = j)p(cwi = j) (25)

p(vwi |cwi = j;µ,Σ)
D
= N (µj ,Σj) p(cwi ;ϕ)

D
= Multinomial(ϕ) (26)

The model is trained to maximize its likelihood with respects to three parameters: the weights

of word vectors’belonging to concepts ϕ, and the means and variances of the distributions

of concepts µ,Σ:

max
ϕ,µ,Σ

logL(ϕ, µ,Σ) =
V∑
i=1

log p(vwi ;ϕ, µ,Σ) (27)

=

V∑
i=1

log
K∑
j=1

p(vwi |cwi = j;µ,Σ)p(cwi = j;ϕ) (28)

I use the Expectation-maximization (EM) algorithm to estimate the parameters, following

numerous previous applications of the GMM. With the estimated parameters, I obtain the

probability of each word in the dictionary belonging to one of the concepts. A concept can

be interpreted in terms of the set of words with highest probability belonging to it.

The above implementation comes with two problems: The number of concepts K is hard

to decide; the results of EM are local optima. First, researchers need to input the number

of concepts K as the parameter for a GMM model, but there is usually no theoretically

grounded reason to make this choice, especially in the early phase of the study. An overesti-

mated K breaks a concept into multiple clusters and increases researchers’burden in manual

examination. An underestimated K conflates multiple concepts into one cluster or overlooks

important groups of concepts. Second, the GMM is multimodal and the EM algorithm by

design does not search for the globally optimal solution. A undesirable consequence, the out-

put GMM depends largely on initial random seeds provided, making it unstable. The two

problems lead to insufficient data coverage, imposing threats to the validity and replicability

of measurement.

I propose a simple but effective remedy, a trial-select-merge workflow: run the model
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many times, hand-pick relevant clusters of concepts found in each trial, and merge them.

First, researchers run the GMM model as many times as they want with a varying number

of concepts K and initial random seeds. Then, for each model, a table with top words in

each cluster is reported (e.g., words belonging to the cluster with over 90% probability).

Researchers manually examine each of the tables to assign labels to cluster that are relevant

to their concepts of interest. Finally, clusters that are assigned labels across models are

merged into the distributed codebook, while all unlabeled clusters (i.e., those that researchers

considered irrelevant) are discarded.

This trial-select-merge workflow is possible because of the property of distributed seman-

tics. Without distributed semantics, the probabilities of all words’concept belonging are

needed for linking documents to concepts. As a result, combining parameters of distributions

across models is not valid or at least takes some additional modeling effort. However, with

distributed semantics that embed documents and words in the same space, the GMM only

serves to search for local optima in the space of distributed semantics and return top words

in local dense area for human evaluation. The task of document coding is done in another

step: I combine the distributed semantics of documents and that of representative words in

concepts to label documents with concepts (details discussed in Section 3.3).

This method for exploratory analysis helps researchers understand what is in the text

data efficiently. It is especially helpful when a researcher explores the relationship between his

initial conceptualization with little prior information about the data and concepts of interest.

The method clusters words instead of documents to reduce dimensionality of data and make

results more interpretable. As distributed semantics captures words’semantics, clusters of

concepts found with the method are much more coherent and interpretable than those found

in topic modeling. In addition, the method integrates judgements of machines and humans

with the trial-select-merge workflow. It reduces the risk of insufficient data coverage caused

by machines’randomness and humans’limited capacity.

3.2 Combining Priors with Data: Distributed Dictionary Augmentation

Researchers usually want to incorporate prior information about concepts of interest in their

text data analysis. Prior information can be operationalized as a dictionary of keywords. I call
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this type of dictionary “seed dictionaries”. Seed dictionaries can come from numerous sources:

random keywords coming out of brainstorming; exploratory analysis of the documents and

words in the data (e.g., clusters found with the method introduced in Section 3.1); external

dictionaries produced by other researchers; results of off-the-shelf natural language processing

algorithms (e.g., named entity recognition, keyword extraction, sentiment analysis).

Direct application of a seed dictionary can cause two problems: lack of coverage and

misplaced context. First, words in a seed dictionary may cover only a very small proportion

of words used in the text dataset of interest. Using the dictionary directly to code the text

data will miss context of similar meaning that is not expressed in the same way as the words

included in the dictionary. Second, the word may have different meanings in different contexts.

Using an off-the-shelf seed dictionary directly can cause mislabeling of meanings of words in

a specific context. The problem can be especially severe in dataset where use of language is

informal and unconventional, such as social media political.

To customize seed dictionaries for local use, I introduce a simple method based on dis-

tributed semantics: distributed dictionary augmentation. The method takes only two steps:

match and augment, and manual adjustment. In addition, an optional step between Step 1

and 2 maybe added: unsupervised or semi-supervised clustering.

Step 1: match and augment. The step starts with finding the intersection: a set of words

that appears in both the seed dictionaries and the data’s dictionary of distributed semantics.

For each word in the intersection, a set of its most similar words in the space of distributed

semantics are added to an augmented dictionary. Words’similarities are defined in terms of

cosine similarities between word vectors (see Section 2.4). Researchers choose a threshold of

consine similarity above which a word qualifies as a new addition to the augmented dictionary.

There is a trade-off regarding the choice of the threshold: a higher threshold usually leads to a

more coherent augmented dictionary but risks missing relevant words; a lower threshold leads

to better inclusion of relevant words but a messier augmented dictionary. In my experiments,

setting cosine similarity higher than 0.5 as the threshold is a reasonable choice. The output

of this step is an automatically generated augmented dictionary where new additions are

assigned the same label as their seeds.

Step 2: manual adjustment. Researchers manually edit the augmented dictionary. Two

types of problems may appear in the dictionary automatically generated in the first step: the
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new additions may be irrelevant, or the seed words may be mislabeled. First, new additions

to the dictionary can be irrelevant, especially when the threshold is set low. Researchers can

remove or relabel these words. If a high proportion of irrelevant words is observed, a proper

fix is going back to Step 1 to increase the threshold. Second, the seed words can be mislabeled.

Researchers can infer from seed words’similar words about their use in the context of the

text data. In some cases, they may find a seed word has a different meaning in the dataset

from the seed dictionary.

An optional step may be added between Step 1 and 2: unsupervised or semi-supervised

clustering of the machine-generated augmented dictionary. Researchers may use unsupervised

or semi-supervised learning algorithms to cluster distributed semantics of words in the aug-

mented dictionary before manual adjustment. This between-step is especially helpful in three

situations. First, when a low threshold is chosen in Step 1, the algorithms can be applied

to identify groups of irrelevant words. Second, when concepts in the dictionary are close to

one another, the algorithms can help to decide belonging of borderline words. Third, when

researchers are interested in dividing concepts into sub-concepts automatically, they can use

cluster algorithms setting the number of clusters higher than the number of concepts in the

seed dictionary. Whether to use unsupervised or semi-supervised clustering depends on how

much researchers want to keep the original concept grouping in the seed dictionary. In gen-

eral, among the above three situations, semi-supervised learning is better for the first two

situations, while unsupervised learning is better for the third situation.

The method of distributed dictionary augmentation helps researchers combine prior infor-

mation with data. Like exploratory concepts clustering, it reduces the dimensionality of data

researchers manually work with by focusing on words; produces a stable and interpretable

codebook with a standardized workflow to combine judgments of humans and machines.

3.3 Applying a Distributed Codebook to Documents

With exploratory concept clustering (Section 3.1) and distributed dictionary augmentation

(Section 3.2), researchers can build a reliable codebook. The next step is to label documents

with the distributed codebook. A straightforward application of properties of distributed

semantics, this step labels how close a document is to a concept defined in the distributed
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codebook referring to closeness of their representations of vector semantics. I introduce three

alternatives of similarity measures: document-level cosine similarity, word-level binarized co-

sine similarity, and count of words. Researchers may choose one of the measures according

to the length of the text data, peculiarity of word choice, and meanings of weights associated

with words in concepts.

To start with, the distributed semantics of a concept is calculated as a summation of

vectors of its associated words. For a concept ck:

vck =
∑

wj∈ck

vwj (29)

3.3.1 Document-level Cosine Similarity (cossim-d)

The document-level cosine similarity measure quantifies a document’s relation with a concept

by the cosine distance of their distributed semantics. Let scoreckdi be a score indicating the

closeness between document di and concept ck:

scoreckdi = cos(vdi ,vck) (30)

Note that when the similarity level drops beneath some low level, differences in values are ir-

relevant: they are equally irrelevant in human judgment. Researcher may consider truncating

the above measure. Let the lower bound be slow:

scoreckdi = max (cos(vdi ,vck), slow) (31)

Documents whose similarity with all concepts are at the lower bound should be considered

irrelevant. Researchers can remove them from the dataset or assign them a separate label

(e.g. a control or placebo group for a text-for-causal-inference study), depending on their

research designs.

This measure is good for short documents. As discussed in Section 2.3, calculating dis-

tributed semantics of documents with a bag-of-word-vector is a radical simplification. The

measure can be problematic with long documents because simple addition of a large number

of word vectors goes beyond the verified compositionality property of distributed semantics,
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so that its property is unknown.

3.3.2 Word-level Binarized Cosine Similarity (cossim-w)

A document can be considered close to a concept when a significant number of its words

are close enough to it, but not exactly the same. The word-level binarized cosine similarity

measure codes documents with this logic, combining the strength of distributed semantics and

the traditional count-based method. Let slow be the lower-bound cosine similarity to consider

a word associated with a concept:

scoreckdi =
∑
w∈di

1 (cos(vw,vck) > slow)× tfdi,w (32)

where tfdi,w = 1 + log10 count(di, w) (33)

I use a shifted log-transformation of counts to reduce the score of long documents. This

is especially useful for datasets with a high variance in length of documents: Without this

penalty, long documents are more likely to get high similarity scores to all concepts compared

to short documents.

Researchers can go further to compare vectors of words in documents with vectors of each

representative word in concepts. I argue that the payoff of this exercise is small. Distributed

semantics of representative words in concepts are by design very close. Thus there is little

chance of an outlier far away from their mean. If the researcher is particular about use of

words, a pure count-based similarity measure should be applied.

3.3.3 Count of Words (count-w)

The third coding scheme uses the traditional count-based method. A document’s closeness

to a concept is measured by the count of its words in the keyword dictionary of the concept.

scoreckdi =
∑

w∈di∩ck

tfdi,w where tfdi,w = 1 + log10 count(di, w) (34)

Again, I use a log-transformation to penalize the score of long documents. This traditional

count-based method is useful for tasks of document coding that have strict requirements on
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use of exact words in the codebook.

3.3.4 Incorporating Weights

In many codebooks, words are associated with weights. For example, codebooks for sentiment

analysis usually assign scores of polarity and intensity to words; researchers may assign weights

indicating level of relevance of words to the crux of a concept. The latter two measures, word-

level binarized cosine similarity and count of words, can conveniently incorporate such weights.

Let weightw,ck
be the weight associated with a word w in concept ck:

(cossim-w) scoreckdi =
∑
w∈di

1 (cos(vw,vck) > slow)× tfdi,w × weightw,ck
(35)

(count) scoreckdi =
∑

w∈di∩ck

tfdi,w × weightw,ck
(36)

3.3.5 Caveats and Summary

How to make sense of these similarity measures? The above similarity scores do not have a

substantively meaningful unit and, importantly, do not indicate the “probability” documents

contain certain concepts. First, the absolute values of these measures only indicate the close-

ness of distributed semantics between a pair of concepts and documents. As discussed in

Section 2.4, distributed semantics are only interpretable by their relative positions, not their

absolute values. As a result, the absolute value of these measures based on distributed se-

mantics do not have a substantively meaningful unit. However, these measures are intervals:

rankings and gaps among measures are meaningful.

Second and importantly, the similarity measures should not be interpreted as anything

related to the probability of a document containing a certain concept or the proportion of

a certain concept in a document. The lack of linkage with probability and proportion is

by design: the cosine similarity measure has no relation with proportion or probability; the

truncations in cossim-d and binarization in cossim-w I suggest further pull them away from

probability and proportion interpretations. This design reflects my view of what constitutes

the crux of document coding in text-as-data measurement: I see it as a task of information

extraction instead of summarization. Summarization considers the universe of content when

labeling documents, while information extraction first makes a decision on what is relevant
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and then only cares about relevant content in document labeling. I argue that, as text data

is becoming larger and messier, coding document as information extraction helps researchers

filter out noise and focus on what is relevant to their substantive interest.

To summarize, I suggest three simple similarity measures to code text documents with

a distributed codebook. The coding scheme is simple because concepts and documents are

represented with distributed semantics in one space. Their simplicity and flexibility enable

researchers to control and explain the coding process. Researchers should interpret the mea-

sures with caution, as discussed above. To improve the robustness of coding, researchers are

advised to experiment with different versions of similarity measures and use a selection of

good ones as final measures.

3.4 Summary and Relevance to Existing Methods

In this section, I present an original method to code documents: a distributed codebook

approach. The method is built on distributed semantics that embeds words, documents,

and concepts in one space. The method is developed with two principles: working with

words instead of documents and integrating judgements of humans and machines. I introduce

two approaches to build a distributed codebook linking text data with concepts of interest:

exploratory concepts clustering and distributed dictionary augmentation. I suggest three

similarity metrics to apply a distributed codebook to documents in the data: document-level

cosine similarity, word-level binarized cosine similarity, and count of words.

The distributed codebook approach draws inspiration from many classic and recent text-

as-data methods. First, the design of the human-machine integration system draws from my

experience in text-as-data analysis and conventional practice in traditional content analysis

(Neuendorf, 2002). This approach replaces some important part of tedious human labor

with machine reading. Second, exploratory concepts clustering draws from the popular topic

modeling with Latent Dirichlet Allocation (Blei et al., 2003; Roberts et al., 2016). This

approach makes the unsupervised model simpler and results more interpretable and stable by

shifting the focus from documents to words and using a trial-select-merge workflow. Third,

the approach borrows from insights of in the weakly supervised learning literature on using

unlabeled or messily labeled data to improve supervised learning models (Basu et al., 2002;
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Eisenstein, 2019, Chapter 5; Jain, 2010; Zhou, 2018). A part of the workflow incorporates

semi-supervised clustering algorithms. What is unique in my approach is that, instead of

letting only machines learn from humans, it allows humans and machines to learn from one

another in the process of data analysis. Finally, recent efforts in multiple disciplines use

distributed semantics to summarize or extract information from text. The lda2vec model

combines word embedding and topic modeling to summarize text data (Moody, 2016). The

DDR method combines distributed semantics and psychological dictionaries for text coding

and dictionary augmentation (Garten et al., 2018). Built on the strength of many classic and

recent works, the distributed codebook approach introduced in this section is the first system

for text-as-data measurement based on distributive semantics in political science.

4 ATIOS: A System for Valid and Replicable Measurement

In this section, I introduce ATIOS, All Text in One Space, a system for valid and replica-

ble text-as-data measurement. In previous sections, I have introduced two integral parts of

the system: Section 2 introduced distributed semantics, a method to represent words and

documents with dense and low-dimensional vectors that quantify their substantive meanings;

Section 3 introduced a new approach to develop a reliable codebook combining judgment

of humans and machines and applied it to label documents. The rest of this section con-

tains three parts: First, I introduce a typical workflow with ATIOS. Second, I discuss how it

increases measurement validity. Third, I discuss how it increases measurement replicability.

4.1 A Typical Workflow with ATIOS

A typical workflow with ATIOS contains three blocks: learning distributed semantics, building

and applying a distributed codebook, and output. In this part, I walk through a full workflow

with ATIOS, as visualized in Figure 5.

Block 1: Learning distributed semantics. An initial step, text of documents are fitted

into algorithms of learn distributed semantics (e.g., word2vec or GloVe). Raw text data

need minimal pre-processing beyond tokenization.9 Removal of extremely rare words helps
9Common pre-processing steps for existing methods are not encouraged, such as stop word removal, lemma-

tization, and stemming. This is because algorithms of distributed semantics learn meanings of words from
their context. This makes keeping documents in their original forms helpful. In addition, the algorithm can
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Figure 5: All Text In One Space (Full workflow)
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improve word vectors.10 Researchers can choose between the two major algorithms introduced.

They can also customize a set of parameters, such as the size of vectors and the length of

context windows. A learned set of distributed semantics is validated by querying similar

words. Researchers can input a selection of words, search for their similar words measured by

respective cosine similarities, and evaluate the quality of distributed semantics. Researchers

are advised to settle on a set of distributed semantics before proceeding to Block 2. Note that

the algorithms of this step are unstable by design because they are trained with stochastic

optimization. Though I encourage researchers to try different model specifications to search

for the best model, I would also remind researchers to feel comfortable moving on even if some

similarity queries of a model “do not make sense,” because errors can be corrected by human

intervention in Block 2.

Block 2: Building and applying a distributed codebook. After researchers have validated

a version of distributed semantics, they can use word vector representation to find concepts

with two methods: Exploratory concepts clustering uses an unsupervised learning algorithm to

cluster word vectors for researchers to label; distributed dictionary augmentation combines a

seed dictionary with distributed semantics to produce customized codebook. The two methods

each contain back-and-forth interactions between humans and machines. Final products of

the two methods are combined into a distributed codebook, which can then be applied to

code documents in the data. Three alternatives of similarity scores are available. The coded

documents are subject to validation, by examining whether documents most relevant to a

selection of concept makse intuitive sense to humans. Researchers can choose among them

according to length of documents, fuzziness about word choice, and evidence in validation. I

suggest reporting multiple scores for robustness check.

Block 3: Output. When coded documents pass researchers validation, three final output

can be prepared: finalized concepts, coded documents, and a distributed codebook. First,

finalized concepts are documented verbally, like many other text-as-data studies. Researchers

can describe what concepts are being measured with the text data. Second, coded documents

are a table of document IDs and their similarity scores with each concept described in the set of

finalized concepts. Finally and importantly, a distributed codebook is prepared, linking verbal

group words of similar meaning in a dense space, so researchers need not worry about including different forms
of the same word causing high dimensionality.

10I find setting the lower bound of total frequency 10 reasonable in my experiments.
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expression of concepts and coded documents. A distributed codebook typically contains two

elements: a table of concepts and their associated words, and a corpus of distributed semantics

containing vector representations of all words in the documents.

4.2 ATIOS for Measurement Validity

ATIOS addresses the challenges of measurement validity for text-as-data measurement by

combining a robust language model, a standardized workflow that can be clearly documented

and reasoned, and an informative set of outputs.

First, the foundational algorithm for this system, distributed semantics, is mature and

robust, with verified theoretical foundation, predictive power, and stability. The algorithm is

based on a solid linguistic theory, the distributional hypothesis and distributional represen-

tation, studied by linguists for decades. It has been proven effective in boosting predictive

performance of natural language processing tasks in the computer science literature. In addi-

tion, despite its stochastic optimization procedure, the algorithm produces more stable results

than many other text-as-data and machine learning models, because of its simple architecture

(compared to other neural network models) and computational linguists’ long-time efforts in

improving its training algorithm.

Second, the workflow to combine judgement of researchers and machines can be clearly

documented and reasoned. Admittedly, this system is not simpler than any other existing

methods: the stepwise guidance may even look complicated. However, clarity, not simplicity, is

my objective. Applications of most methods for text-as-data measurement go through a messy

iterative process, as reviewed in Section 1.1. However, these iterative processes are usually

opaque and untraceable because researchers lack tools to document and reason about their

choices in the iterative steps, causing difficulty in justifying measurement validity. ATIOS

provides such a tool. It modularizes machine algorithms into three parts and spreads human

intervention across them: learning language representation, building a reliable codebook, and

obtaining document labels. The design imitates a natural process of content analysis. The

system’s intermediate output is clear and self-explanatory: all iterations are documented and

under researchers’ control; reasoning is provided on how humans and machines supplement

each other’s limitations in the process.
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Third, final output of ATIOS contains an informative map between concepts and data,

accessible and falsifiable by readers. Key to its final output, a distributed codebook links

verbal distribution of concepts of interest and quantified labels of documents. It allows re-

searchers to present a concrete and concise coding scheme for readers’ evaluation. With a

distributed codebook, readers are enabled to criticize a text-as-data study based on specific

mis-conceptualization or mis-labeling. They can also suggest specific robustness checks with-

out tasking researchers to re-run the whole analysis. Compared to many existing methods

that output a combination of verbal description of concepts, black-box models, and a few ex-

ample document-label pairs, I argue that ATIOS produces output that enhances measurement

validity and makes its communication straightforward.

4.3 ATIOS for Measurement Replicability

ATIOS produces a set of replicable output for follow-up observational and experimental stud-

ies. The key to the system’s replicability is a distributed codebook in its final output. It can

be used in four ways for different replication tasks: for replication with similar observational

text data, the learned distributed semantics can be directly applied; for replication with mod-

erately different observational data, the learned distributed semantics can be fine-tuned; for

replication with significantly different observational text data, the vocabulary can be used as

a seed dictionary; for follow-up experimental studies, the distributed codebook guides their

designs in multiple ways.

A distributed codebook should be used in different ways for different replication tasks

because of the property of distributed semantics. A brief recap, algorithms of distributed

semantics learn quantified meanings of words from the context they are placed. Vector rep-

resentation of words makes sense through relative instead of absolute positions. As a result,

distributed semantics are contextualized on the language patterns of text data from which it

is trained and researchers should use caution when applying them to another dataset.11

First, to replicate a study with a similar dataset, the procedure is straightforward: re-

searchers simply use the distributed codebook to embed documents of the new dataset, then

apply the same coding scheme to code documents.
11I should add that it is already more generalizable than many text-as-data modeling working with docu-

ments.
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Second, a slightly trickier case is replication with a moderately different dataset: re-

searchers may want to make some slight adjustment to the learned distributed semantics to

fit local context. In this case, vector representations produced by the previous study can

be input as initial seed of the current study’s embedding step to fine-tune the distributed

semantics. After fine-tuning, researchers can follow the coding scheme of the original step to

embed and code documents.

Third, for significantly different text data, it does not make sense to use any of the original

distributed semantics. In this case, the distributed codebook is used as a traditional dictionary

mapping keywords to concepts. Researchers can use the codebook as a seed dictionary in the

step of distributed dictionary augmentation.

Finally, for designs of follow-up experimental studies, the distributed codebook can serve

as a guideline in designs of text as treatment. Keywords of concepts can be used as treatments

per se. Semantic closeness between words and concepts of interest measured by distributed

semantics can inform the relevance and strength of certain treatments. Clusters of words

considered irrelevant in the coding process can inform design of text presented to control and

placebo groups.

5 Conclusion: A Low-tech and Unautomated System

In political science studies, researchers are interested in creating valid and replicable mea-

surement based on text data. The task has become increasingly challenging in the “big

data”era: the growing size of text data available exceeds researchers’ capacity to manually

examine; frontier machine learning algorithms developed in the computer science community

are not designed to help political science researchers analyze data for scientific inquiries. In

this paper, I address the challenge by building a system around a frontier machine learning

algorithm for political scientists. First, I introduce distributed semantics: a natural language

processing algorithm to represent text data in low-dimensional dense vectors. This is the first

comprehensive introduction of the intuition and engineering details of this most important

natural language processing algorithm to the political science community. Second, building

upon distributed semantics, I present a new system for text-as-data measurement featured

by its capacity to integrate judgment of humans and machines in the analysis process and to
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produce informative output facilitating replication. This is the first text-as-data system in

political science incorporating distributed semantics in its workflow. More importantly, it is

a method that improves upon existing methods in the validity and replicability of text-based

measurement.

The system is being extended in multiple ways. First, software development is work in

progress. I have developed a Python program for its applications to an example dataset of

political communication in a Chinese social media site. Ongoing efforts include: application

of the method to more example datasets, including datasets of interest to the political science

community and standardized test datasets of interest to the computer science community;

development of an R program; development of a graphic user interface for researchers not

familiar with coding. Second, the workflow of stepwise guidance can be further improved.

For example, algorithms can be developed to weight or pre-select important words for more

efficient exploratory concepts clustering. A collection of suggested seed dictionaries can be

provided by the system. More methods helping researchers validate and intervene in ma-

chine coding are to be added. User-friendly evaluation metrics are being developed to help

researchers understand and report the quality of results in each step. Third, the system can

be extended to allow researchers to choose larger basic units of text, such as sentences or

paragraphs. Despite the advantage of using words as basic unit in reducing dimensional-

ity and increasing interpretability, researchers may find it useful to use larger basic units of

text: phrases, sentences, or paragraphs. A simple extension, collocation extraction algorithms

can be applied to detect phrases before learning distributed semantics (e.g., using Pointwise

Mutual Information to find frequent co-appearing words and group them into a token) (Eisen-

stein, 2019, Chapter 14). With further extensions, the system can provide options to replace

word embedding with sentence or paragraph embedding to fit the need (Dai et al., 2015; Le

and Mikolov, 2014; Kiros et al., 2015). Fourth, a farther extension, the system can incorpo-

rate more complicated representation of text data. For example, recent models of distributed

semantics such as ELMo and BERT can be applied in an interpretable way (Devlin et al.,

2018; Peters et al., 2018).

The system is compatible with existing methods of supervised document coding and recent

developments in crowdsourcing methods for text-as-data model validation. First, though the

system is fully capable of producing final output of text-as-data measurement, researchers
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can use its results as input of supervised document coding methods. This can be especially

relevant when contents in documents are exceptionally complicated and researchers would like

to manually adjust the results for robustness. Second, the system is compatible with latest

developments in crowdsourcing evaluation of text-as-data models (Spirling and Rodriguez,

2019; Ying et al., 2019). All steps of human intervention and evaluation (e.g., distributed

semantics validation, exploratory concept clustering, distributive document augmentation,

and document coding validation) can be crowdsourced, as opposed to having researchers

doing everything alone. In fact, intermediate and final output of this system is more friendly

to crowdsourcing effort than many other existing methods since they are interpretable and

replicable.

I conclude this paper by embedding the method in a larger theme: big data for political

science research. The method presented in this paper is a low-tech and unautomated system.

First, the method is low-tech in that it does not use any latest or complicated method of

artificial intelligence. To the contrary, it is based on a mature and robust method that is

theoretically founded and verified in applications for a few years. The architecture of the

models is simple and straightforward compared to recent developments. Second, the method

is unautomated or even anti-automation. As evident in its design, researchers’ intervention,

validation, and interpretation are requested everywhere in the process of data analysis.

I develop the low-tech and unautomated system to address two related inquiries on how to

integrate humans and machines for big-data research in social sciences, one raised by political

scientists and the other by data scientists. First, political scientists have long been aware of

the importance of integrating humans and machines in research with big data, but few works

in the line provide a practical guide. Specific to text-as-data methods, Grimmer and Stewart

(2013), a ground-breaking piece on text-as-data in political science, proposes four important

principles for the method. Two of them are about human-machine integration:“quantitative

methods augment humans, not replace them”and “validate, validate, validate.”The anti-

automation design of this system is a direct response to the principles.

A related inquiry comes from the data science community on interpretable machine learn-

ing. A recent contribution, Rudin (2019) has a self-explanatory title: “stop explaining

blackbox models for high-stakes decisions and use interpretable models instead.”Warning

that explaining blackbox models can cause “catastrophic harm to society,”Rudin argues
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that researchers should make models interpretable by design, instead of looking for ways to

unpack blackbox algorithms. Consistent with this advice, I apply a mature and simple (low-

tech) model to minimize the uncertainty induced by the algorithm blackbox and maximize

interpretability with an unautomated system.

Finally, this paper contributes to an ongoing discussion on how to make theory, big data,

and causal inference work together in political science. Political scientists have agreed that

theory, big data, and causal inference are compatible trends that have the opportunities to

enhance one another (Clark and Golder, 2015; Grimmer, 2015; Monroe et al., 2015). However,

the scholarship is still exploring how to make it happen. The system introduced in this paper

attempts offer a possibility to link big text data to theories and causal identification: the

stepwise guidance in distributed codebook building links theory-driven conceptualization to

data; the output of distributed codebook makes follow-up experimental studies convenient.

With this system and its extensions, I attempt to provide a generic user-friendly tool serving

researchers interested in exploring big text data per se, as well as those who use big text data

as an inspiration for theory-building and experimental designs.
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